


## A COICHEE POBKET REEERENBE TO WIRE AND GABLE REQURRENENTS FOR EST PRODUUTS AND SYSTEMS

## FIRE ALARM - SECURIITY - AGEESS GONTROL • GETV

Published by Edwards Systems Technology
In conjunction with Paige Electric Co., L.P.

## EST CONTACTS

| Website | Fax | Phone |
| :---: | :---: | :---: |
| United States <br> Bradenton, FL <br> www.est.net | 866-503-3996 | 888-378-2329 |
| Canada Owen Sound, ON www.edwards.ca | 519-372-2705 | 519-376-2430 |
| International <br> Toronto, Canada www.estinternational.com | 905-270-9553 | 905-270-1711 |
| Corporate Headquarters, EST 90 Fieldstone Court, Cheshire, CT |  |  |
| U.S. Manufacturing, EST Pittsfield \& Newport, ME |  |  |
| Offices Worldwide <br> Bradenton, FI, USA • Cheshire, CT, USA • Pitts <br> Canada • Toronto, ON, Canada • London, UK <br> Dubai, UAE • Shanghai, China • Beiijing, Chin | jeld, ME, USA • Owe Santiago, Chile • <br> - Singapore - New | Sound, ON, <br> Dhabi, UAE • <br> ehhi, India |



## A CONCISE POCKET REFERENCE TO WIRE AND CABLE REQUIREMENTS FOR EST PRODUCTS AND SYSTEMS

FIRE ALARM - SECURITY • ACCESS CONTROL • CCTV

Published by Edwards Systems Technology
In conjunction with Paige Electric Co., L.P.

## EST Installer's Wire Guide

Published by EST Press, an imprint of Edwards Systems Technology in conjunction with Paige Electric Co., L.P.

Copyright © 2004 Edwards Systems Technology
All rights reserved.
8985 Town Center Parkway, Bradenton, FL 34202
EST P/N: 85010-0139, Issue 2
ISBN: 0-9706268-3-5

Wiring diagrams provided herein are for information and reference only and are not to be used for installation purposes. Consult the appropriate installation documents for wiring and configuration details.

This guidebook is for information only and is not intended as a substitute for verbatim legislated requirements. For authoritative specifications regarding the application of life safety, security, and access control systems, consult current editions of applicable codes and standards. For authoritative interpretation of those codes and standards, consult your local authority having jurisdiction.

While every effort has been made to ensure the accuracy and completeness of this guidebook, the authors and publishers assume no responsibility for errors, inaccuracies, omissions, or any inconsistencies herein.

For more information or questions relating to fire alarm products shown in this guide, contact EST. For more information or questions relating to cable products shown in this guide, contact Paige Electric.

Synergy, FullLight Strobe Technology, Genesis, and Signature Series are trademarks of Edwards Systems Technology Inc.

## Also from EST Press:

## Security and Access Control Handbook

- A practical guide to application and system design

Handbook of Visual Notification Appliances for Fire Alarm Applications

- A practical guide to regulatory compliance

Glossary of Fire Alarm and Security Terminology

- A desk reference for life safety and security professionals


## INTRODUCTION

This technical handbook has been designed to provide the users and installers of EST Systems with quick information in a condensed, user-friendly format.

EST/Paige part numbers contained in this handbook have highlighted cable characteristics to allow you to easily identify the cable you require for each installation.

Multiple charts and graphs detail technical data for wire and cable to assist you with calculations.

If we can provide additonal technical support, answer any of your daily questions, or assist with your additional requirements, we invite you to contact our technical service hotline.

## TOLL FREE HOTLINE: 1-800-655-4497

It is our intention to keep the product information current and accurate. We can not cover specific applications or anticipate all requirements. All specifications are subject to change without notice.

For more information or questions relating to fire alarm products shown in this guide, contact EST.

For more information or questions relating to cable products shown in this guide, contact Paige Electric.

## HOW TO USE THIS GUIDE

This book is provided to assist system designers and installers in the selection of cables for use with EST products. Those unfamiliar with EST Products should start by selecting a control panel.

The information shown for each control panel includes wiring diagrams and circuit tables.

The circuit type is designated with a letter, (A-Z). In the tables, the letters are listed on the left, on the drawings, letters appear in red diamonds. Once the circuit type (A-Z) is identified, the user can proceed to the Paige Catalog included in this guide.

Users familiar with EST products and their circuit types can proceed directly to the circuit type to obtain the cross reference.

Keys to symbols used in the diagrams can be found on pages 12,13 and 16 . Triangle symbols on diagrams refer to notes on the relevant catalog sheets and technical manuals. Please consult these for further information.

This book contains a wealth of reference information about cable selection and other related topics. This information can be found in the Reference Section.

As always, your comments are welcome. Please let us know how we can improve this guide.

For additional copies, contact: EST Marketing:
By e-mail at: EST.marketing@edwards.spx.com
By telephone: 888-378-2329

## TABLE OF CONTENTS

## EST PRODUCTS

Product Overview ..... 6
Control Panels
Fireshield ..... 7
QuickStart ..... 11
EST3 ..... 21
EST3 Network Annunciator ..... 36
Envoy Graphic Annunciator ..... 37
Fireworks ..... 38
Booster Power Supplies ..... 40
Conventional Initiating Devices
Manual Stations: 270, 276, 277, 278, 279, 1534-1 ..... 41
Detectors: CSBU-1, EC3OU-3, ED2OFTU, EC2ORRU-3, EC-LED, EC-DTS, 280 Series ..... 42
SuperDuct ..... 43
Beam Detectors ..... 44
Notification Appliances
Genesis (wall mount): Chimes, Chime-strobes: GC-HVDM ..... 45
Genesis (ceiling mount): Horns, Strobes, Sync Modules: GC-HVDM ..... 46
Genesis (wall mount): Speakers: G4-S2VM, G4-S7VM ..... 47
Genesis (ceiling mount): Speakers: GC-S2VM, GC-S7VM ..... 48
Integrity (ceiling mount): Speakers: 964, 965 ..... 49
Integrity (wall mount): Strobes: 405 Series ..... 51
Integrity (wall mount): Speakers, Speaker / Strobes: 757 Series ..... 52
Integrity: Horns, Horn-strobes: 757 Series ..... 54
Hazardous Location Notification Appliances ..... 55

## TABLE OF CONTENTS

## EST PRODUCTS (CONTINUED)

Signature
Modules
Manual Pull Station w / Module: SIGA-270, -270P, -278, -271 ..... 56
Fire Input Modules (gang mount): SIGA-CT1, -CT2, -WTM, -MMI, -UM ..... 57
Fire Input Modules (UIO mount): SIGA-UIO (2R, 6, 6R), -MCT1, -MCT2, -MAB ..... 58
Security Input Modules: SIGA-SEC-2, -MD ..... 59
Output Modules (gang mount): SIGA-CC1, -CC2, -UM, -CR, -CRR ..... 60
Output Modules (UIO mount): SIGA-UIO (2/rm, 6, 6R), -MCCI, -MCC2 -MAB,-MCR,-MCRR ..... 63
Firemen's Telephone / Warden Station: SIGA-(M)CCI ..... 68
Releasing Module: SIGA-REL ..... 69
Isolator Module: SIGA-IM ..... 70
Audio Amplifiers \& Power Supply: SIGA-AA(30,50), -APS(220) ..... 71
Detectors
Detectors: SIGA-IPHS (4), -PHS (3D), -PS, -IS, -HFS, -HRS, -LED, -DTS ..... 72
Duct Detectors: SIGA-DMP, -DM ..... 73
Detector Accessories: SIGA-LED,-DTS ..... 74
Reference
24 Vdc NAC Wire Length ..... 75
25 or 70 Vrms NAC Wire Length ..... 78
Signature Data Circuit ..... 80
Network Data Riser ..... 87
3-SAC Data Bus \& Power ..... 89
Paige Wire Tables ..... 95

## TABLE OF CONTENTS

## LIST OF TABLES \& REFERENCES

Circuit Reference Table - Fireshield ..... 9
Circuit Reference Table - QuickStart (QSI, QS4, QSC) ..... 18
Circuit Reference Table - EST3 ..... 22
Table A-1: Wire resistance ratings to use for wire length calculations ..... 75
24 Vdc NAC Voltage Drop calculations ..... 76
24 Vdc NAC maximum wire length calculation ..... 77
25 Vrms or 70 Vrms NAC wire length calculation ..... 78
Table B-1: Maximum allowable length at $25 \mathrm{Vrms}, 0.5 \mathrm{~dB}$ loss ..... 79
Table B-2: Maximum allowable length at $70 \mathrm{Vrms}, 0.5 \mathrm{~dB}$ loss ..... 79
Signature data circuit maximum wire length calculations ..... 80
Table C-1: Maximum amount of wire for constructing a Signature loop ..... 81
Tables C-2 to C-5 show longest allowable circuit paths (configured for 2-wire smokes) Table C-2: 0 SIGA-UMs or SIGA-MABs ..... 83
Table C-3: 1 to 5 SIGA-UMs or SIGA-MABs ..... 84
Table C-4: 6 to 10 SIGA-UMs or SIGA-MABs ..... 85
Table C-5: 11 to 15 SIGA-UMs or SIGA-MABs ..... 86
Network data riser limits ..... 87
3-SAC Data Bus \& Power ..... 89
Form A: 3-SAC alarm and standby load ..... 90
Table D-1: SAC bus wire lengths versus number of doors and current loads using 16 AWG wire ..... 91
Table D-2: SAC bus wire lengths versus number of doors and current loads using 14 AWG wire ..... 93
Circuit Compatibility Matrix ..... 94
Paige Wire Tables ..... 95

## EST PRODUCT OVERVIEW

Over a century ago when Robert Edwards installed the world's first electric fire alarm bell in a New York City church, he began a tradition of innovation that would chart the course of building safety and security for the next 130 years. From pioneering work in multisensor technology, to award-winning design breakthroughs, the company that bears his name has established itself as the leader in cutting-edge systems and technology. Today, that name is synonymous with innovation and quality, and Edwards Systems Technology is widely regarded as the company that has achieved some of the most significant and forwardlooking advances in its field. Among EST's innovations you'll find:

Signature Series: the world's first truly intelligent multisensor smoke detector combines the output from three sensing elements and compares the results over time against sophisticated algorithms that characterize different types of combustion.

Synergy Enabled EST3: the first multi-function network control platform to earn across-the-board listings for fire detection, security, and access control.

EST peer-to-peer networking: an innovation that rendered much of the industry's master/slave networks obsolete virtually overnight.

Genesis Series: the world's smallest and slimmest line of audible and visual notification appliances eliminates bulky specular reflectors used in other emergency strobes and adds design appeal.

In this guide you will find EST products organized into the following subsections:

- Control Panels, FireWorks and Booster Power Supplies
- Initiating Devices: Manual Stations, EC Detectors and other detectors
- Notification Appliances
- Signature Analog Addressable Devices
- Accessories


## CONTROL PANELS

## FIRESHIELD



The FireShield family of conventional panels and accessories consists of three panels, a DACT /dialer, serial remote annunciators and relays, city tie modules and reverse polarity modules. FireShield's ingenious initiating device circuits (IDCs) can be programmed for one of eight configurations. Several of these configurations allow the use of one zone to do the work of two. Verified detection circuits allow detectors and contact devices (such as pull stations) to be installed on the same zone. Combination circuits allow waterflow switches and their associated valve tamper switches to be connected on a common two-wire IDC.
FireShield panels are available in three sizes and can be ordered with or without the optional DACT:

FS302 - The three-zone FS302 is ideal for use as a sprinkler supervisory panel. It includes three Class B IDCs and two Class B NACs.
FS502 - Factory configured with five Class B IDCs and two Class B NACs. FS1004 - Factory configured with 10 Class B IDCs and four Class B NACs.

On the FS502 and FS104, IDCs or NACs can be paired to form single Class A circuits.

All panels are available in a red or gray finish.

## Following Page:

The optional DACT/Dialer is a multifunction module that provides communications, modem capability, and LCD display functions. Its primary function is as a Digital Alarm Communicator Transmitter (DACT).
The FSRSI is ideal for common system annunciation. It includes five LEDs and a local silence/lamp test switch.
The FSRZI-A is used to indicate zones in the alarm state. It contains five red LEDs. The panel can support two modules programmed for each selection.
The Remote Relay Module (FSRRM) can be configured to function in either a zone relay mode or a common system mode.

## CONTROL PANELS

## FIRESHIELD

DACT (Digital Alarm Communicator Transmitter)


FSRSI (Remote FSRZI-A (Remote System Indicator) Zone Indicator)


To next device

FSRRM (Remote Relay Module)


From control panel
or previous device
To next device


## CONTROL PANELS

CIRCUIT REFERENCE TABLE - FIRESHIELD

| Circuit Reference Table - FireShield |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ref/Pg |  | Circuit Type | Gauges | Description | Notes |
| A | 95 | Initioting Device Circuit (IDC) | 18 AWG to 12AWG | TFN, THHN, FPL, FPLR, FPLP | Alarm, Waterflow, Supervisory \& Monitor circuits |
| B | 95 | Notification Appliance Circuit (NAC) 24 VDC | 18 AWG to 12AWG | TFN, THHN, FPL, FPLR, FPLP | Horns \& Strobe circuits |
| 1 | 95 | 24 VDC Power distribution (Aux) | 18 AWG to 12AWG | TFN, THHN, FPL, FPLR, FPLP | Power for 4 Wire Detector, Relay FSRSI, FSRZI-A, FSRRM. AWG depends on voltage drop |
| N | 95 | Relay Module (FSRRM) | 18 AWG to 12 AWG | TFN, THHN, FPL, FPLR, FPLP | Five dry contact relays. Form C configurable as zone or common |
| R | - | Telephone Line - DACT connection to RJ31X jack | 7 ff long cable supplied with FSDACT |  | Plug to plug cable |
| V | 99 | Serial Communication Bus for remote annunciator \& relays | 18 AWG to 12AWG | FPL, FPLR, FPLP | Wiring for the FSRSI, FSRZI-A or FSRRM. |
|  |  | For maximum For more detail on wiring | gths see the tables, ons refer to the pro | and matrix in th uals and installa | nce section. <br> ets for the specific product. |

For cable part numbers turn to the Paige / EST Cross Reference Table on the page indicated.

## CONTROL PANELS

FIRESHIELD WIRING DIAGRAM


## CONTROL PANELS

## QUICKSTART QSC



EST's QSC life safety control panel provides a cost-effective solution for larger conventional life safety applications. Supporting up to 48 conventional Class B or a combination of 40 Class A and Class B initiating circuits, this panel leaves plenty of room to grow. QSC is compatible with either two- or four-wire conventional detectors. QuickStart's modular design brings flexibility to every installation. Option cards provide a dialer, auxiliary relays and additional system capacity. QSC also supports as many as eight remote annunciators and up to 60 programmable front panel switches with dual LEDs for system control and display.

## CONTROL PANELS

## QUICKSTART QSC CONVENTIONAL CIRCUIT OPTIONS

Consult the QuickStart Wiring Reference Table on page 18 for further details.


## Legend



## CONTROL PANELS

## QUICKSTART QSI



EST's QS1 life safety control panel brings big-system intelligent control to small applications. Supporting up to 250 intelligent detectors and modules, QSI takes full advantage of EST's exclusive Signature Series technology, which provides electronic addressing, automatic device mapping, environmental compensation, and true multisensor detection. QuickStart's innovative design makes it easy to add a dialer or extra auxiliary relays. QS1 also supports as many as eight remote annunciators and up to 30 programmable front panel switches with dual LEDs for system control and display. The benefits brought by QS1 to retrofit applications underscore the true potential of this powerful system. As an intelligent panel, QSI supports Signature Series devices, which can use existing wiring in most retrofit applications. This makes upgrading from a conventional system to analog control a simple operation with minimal disruption to normal operations at the site.

Legend for diagrams on pages $14 \& 15$


## CONTROL PANELS

## QUICKSTART QSI CLASS A SIGNATURE DATA CIRCUIT

Consult the QuickStart Wiring Reference Table on page 18 for further details.
see legend on page 13


## CONTROL PANELS

## QUICKSTART QSI CLASS B SIGNATURE DATA CIRCUIT

Consult the QuickStart Wiring Reference Table on page 18 for further details.
see legend on page 13


## CONTROL PANELS

## QUCKSTART QS4



EST's QS4 QuickStart life safety control panel provides conventional and intelligent addressable circuits in a single intelligent control panel. Supporting up to 1,000 intelligent detectors and modules, QS4 takes full advantage of EST's exclusive Signature Series technology, which provides electronic addressing, automatic device mapping, environmental compensation, and true multisensor detection. As a hybrid system, QS4 combines support for four Signature addressable circuits ( 1000 addressable points) along with up to 48 conventional Class B or a combination of 40 Class A and Class B initiating circuits. Compatible with either two- or four-wire detectors, conventional detectors. QuickStart's design leaves plenty of room for system expansion. Option cards include a dialer, auxiliary relays, and additional system capacity. The QS4 also supports as many as eight remote annunciators and up to 60 programmable front panel switches with dual LEDs for system control and display.

Legend for diagram on page 17


## CONTROL PANELS

## QUICKSTART WIRING DIAGRAM



## CONTROL PANELS

## CIRCUIT REFERENCE TABLE - QUICKSTART (QSI, QS4, QSC)

| For cable part numbers turn to the Paige/EST Cross Reference Table on the page indicated |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Circuit Type | Gauges | Description | Notes |
| A | 95 | $\begin{aligned} & \text { Initiating Device Circuit } \\ & \text { (IDC) } \end{aligned}$ | 18 AWG to 12 AWG | TFN, THHN, FPL, FPLR, FPLP | Input circuits on ZB16-4, ZA8-2 and modules (CT1, CT2, WTM, MM, UM \& MAB) |
| B | 95 | Notification Appliance Circuit (NAC) 24 Vdc | 18 AWG to 12 AWG | TFN, THHN, FPL, FPLR, FPLP | Output Circuits on SLIC, ZB16-4, ZA8-2, and modules (CC1, CC2, UM, \& MAB) |
| D | 95 | Signature Addressable Loop | 18 AWG to 12 AWG | TFN, THHN, FPL, FPLR, FPLP | Loop Controller (SLIC) card to addressable devices |
| 1 | 95 | 24 Vdc Power distribution (Smoke Acc. \& AUX Power) | 18 AWG to 12 AWG | TFN, THHN, FPL, FPLR, FPLP | 4 Wire Detector/Relay/Annc. AWG depends on voltage drop |
| N | 95 | Relay Module (ZR8) | 18 AWG to 12 AWG | TFN, THHN, FPL, FPLR, FPLP | Eight dry contact relays (ZR8) Form A or B configurable. |
| R | - | Telephone Line - DACT connection to RJ31X jack | 7 ft cable supplied with | DACT supplied with DACT | Terminal to Plug cable |
| S | 99 | RS-232 Communications (Printer Wiring) | 18 AWG 4 cond. min. | FPL, FPLR, FPLP | 50 Ft Max. Panel to Printer |
| U | 98 | Communications <br> Network RS-485 | 18 AWG to 12 AWG | FPL, FPLR, FPLP | Annunciator to Panel and Network Annunciator |
| For maximum wire lengths see the tables, formulas and matrix in the reference section. For more detail on wiring specifications refer to the product manuals and installation sheets for the specific product. |  |  |  |  |  |

## CONTROL PANELS

## QUICKSTART OPTION CARDS

NT-A Class A RS-485 Card/UART Port
ZR8 Relay Card


## ZB16-4 Class B Zone Card



ZA8-2 Class A
Zone Card TB1


## CONTROL PANELS

## QUICKSTART OPTION CARDS AND ACCESSORIES

DLD Dual Line Dialer


PT-IS Serial Printer



Other Accessories:
CDR-3 Coder (for wiring diagram see page 33) RPM Reverse Polarity Card (no wiring diagram available)

## CONTROL PANELS

## EST3

EST3 is a modular system uniquely designed to easily meet the needs of standalone single node systems or multimode networks. Fire alarm, security, access control and audio functions use the same fundamental components, simplifying system layouts.

EST3 is a superbly adaptable life safety system, lending itself to medium and large building
 applications. Cabinets are available with room for system batteries up to 65 Amp hours. With EST3, one 24-volt battery supports up to four power supplies. Each supply will support up to 7 Amp load. With four supplies, 28 Amps of current is available - all backed up by a common battery.

EST3 operates on a multi priority peer-to-peer token ring network. The multi-priority token ring gives EST3 exceptional response. EST3 token ring network configuration also permits vast distances between nodes. The allowable distance between nodes on \# 18 AWG ( 0.75 mm 2 ) is $5,000 \mathrm{ft}(1,523 \mathrm{~m})$. With 64 nodes supported on a network, the total network length is in excess of $300,000 \mathrm{ft}(91,400 \mathrm{~m})$, or nearly 60 miles! A single node supports up to 10 Signature loop controllers with 250 devices per loop, (2,500 points total per node, 160,000 points per network).

Taking full advantage of digital technology, up to eight channels of audio sources can be sent over a single twisted pair of wires between nodes. Coupling the inherent reliability and performance of zoned amplifiers with EST3 simplified user interfaces makes audio system design and operation both easy and dependable.

EST3 is the right choice for any medium to large application. Its multiplex functions are second to none in the industry today.

## CONTROL PANELS

## CIRCUT ReFERENCE TABLE-EST3

For cable part numbers turn to the Paige/EST Cross Reference Tables on the pages indicated below.

| Ref/ |  | Ciruit Type | Gauges | Description | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 95 | Initiating Device Circuit (IDC) | 18 AWG to 12 AWG | TFN/THHN, FPLR, FPL, FPLP | Input circuits on 3-IDC8/4 and modules (CT1, CT2, WTM, MM, UM \& MAB) |
| B | 95 | Notification Appliance Circuit (NAC) 24 Vdc | 18 AWG to 12 AWG | TFN/THHN, FPLR, FPL, FPLP | Output Circuits on ZA8-2 and modules (CCI, CC2, UM, \& MAB) |
| C | 95 | Notitication Appliance (NAC) Audio | 18 AWG to 12 AWG | Twisted Pair - FPLR, FPL, FPLP | 3 -ZAxx to CC1 \& CC2 \& speakers |
| D | 95 | Signature Analog Addressable Loop | 18 AWG to 12 AWG | TFN/THHN, FPLR, FPL, FPLP | Loop Controller (3-SSDC) to Signature devices. |
| E | 95 | Analog Addressable Loop | 18 AWG to 12 AWG | TFN/THHN, FPLR, FPL, FPLP | 3-AADC to Addressable devices (not Signature) |
| H | 96 | Firemen's Telephone | 18 AWG to 12 AWG | 1 Pair Twisted Shielded | 3 -ASU to $\mathrm{Cl}, \mathrm{CCl}$ to Jack/Station. |
| I | 95 | 24 Vdc Power distribution | 18 AWG to 12 AWG | TFN/THHN, FPLR, FPL, FPLP | 4 Wire Detector/Relay/Annc. AWG depends on voltage drop |
| K | 97 | Security (3-SAC) Bus | 18 AWG to 14 AWG | FPLR, FPL, FPLP | $3-\mathrm{SAC} \mathrm{to} \mathrm{CRC} \mathrm{\&} \mathrm{KPDISP}$. |
| L | 96 | Card/PIN Reader | 22 AWG to 16 AWG | FPLR, FPL, FPLP or CM, CMR, CMP | CRC to Card/PIN Reader. |
| M | 96 | Security Device Circuit | 22 AWG to 16 AWG | FPLR, FPL, FPLP or CM, CMR, CMP | CRC or SEC-2 to Door Contat/ Request to Exit. |
| N | 95 | Relay Module (FSRRM) | 18 AWG to 12 AWG | TFN/THHN, FPL, FPLR, FPLP | Five dry contact relays. <br> Form C Configurable as zone or common |
| R | - | CO Telephone Line | Supplied with 3-Modcom | Supplied with 3-Modcom | 3-Modcom to RJ31X, 7 feet, plug to plug, cable EST P/N 3601377. |
| S | 99 | RS-232Communications Printer/Fireworks | 22 or 18 AWG 4 cond. min. | FPLR, FPL, FPLP or CM, CMR, CMP | 50 feet Max. Panel to Printer or from Panel to Fireworks |
| T | 98 | Audio Network | 18 AWG to 12 AWG | FPLR FPL, FPLP | 5000 feet max between any three panels. |
| U | 98 | RS-485 Communications Network | 18 AWG to 12 AWG | FPLR, FPL, FPLP | 5000 feet max between any 3 panels. |
| W | 100 | Network Fiber Optics | 9/125 Singlemode $62.5 / 125 \mathrm{~mm}$ or 100/140 mm Multimode | OFNR, OFNP | Fiber Optic (3-FIB) card |
| X | 100 | Netcom-16D Router Cable (Ethernet) | Cat 5E/6 | CMR, CMP, CMG. CM | Cable from Fireworks to NETCOM-16D (300Ft. Max) |
| Y | 100 | Fireworks Short Haul Modems (FW-XPC/FW-XPL) | 26 AWG Min. (4 Conductor) | Twisted Pairs Telephone cable | Cable for Modem to Modem connections (FW-XPC/FW-XPL) |
| For maximum wire lengths consult the reference section. For more detail on wiring specifications refer to the product manuals and installatio |  |  |  |  |  |

Diagrams are for reference only. Consult the appropriate installation sheet for wiring details.

## CONTROL PANELS

## TYPICAL EST3 WIRING



## CONTROL PANELS

## EST3 NETWORK

## 3-CPUI Central Processor Unit Module

As a single node standalone system, the 3-CPU1 can control up to 19 local rail modules. For larger systems, up to 64 nodes interconnect on a peer-to-peer multi-priority token ring protocol network.

Communications Cards (mount to back of module)
3-RS232: Two optically-isolated RS-232 ports support connection of a printer and/or an external command center.
3-RS485A/B: The 3-RS485A card provides a Class A or Class B circuit for network communications signal and two additional circuits for Class A digitized audio signals. The 3RS485B card provides one Class B circuit for network communications and one for the digitized audio signals.


## CONTROL PANELS

## EST3 NETWORK AUDIO



The Audio Source Unit (3-ASU/3-ASUFT) converts analog signals to digital signals. These units support connection of a local microphone, remote microphone, telephone voice line, and auxiliary audio input.


EST3

## CONTROL PANELS

## SIGNATURE DRIVER CONTROLLER MODULES

The 3-SSDC and 3-SDDC Signature Driver Controller modules provide an intelligent interface between the 3-CPU(1) module and Signature Series fire alarm and security devices.

3-SSDC Single Signature Driver Controller Module (supports one Signature Data circuit)

3-SDDC Signature Dual Driver Controller Module (supports two Signature circuits)

3-SDC Signature Device Card (upgrades a 3-SSDC to a 3-SDDC)


Diagrams are for reference only.
Consult the appropriate installation sheet for wiring details.

## CONTROL PANELS

## EST3 MODULES

3-IDC8/4 Initiating Device Circuit (Hardwired) Module





3-MODCOM Modem Communicator


## CONTROL PANELS

## EST3 MODULES

3-OPS Off Premise Signaling Module

'Old' style reverse polarity operation

'New' style reverse
polarity operation


Fiber Optics Interface


37

## CONTROL PANELS

## SECURITY \& ACCESSCONTROL

3-SAC
Security/Access Control Module

$120 \Omega$ Terminatin
Resistor


## CONTROL PANELS

EST3 NETWORK ACCESSORIES

IOP3A Isolated RS-232 Card


IOP3A to 3-CPU1 wiring


NOTE: The IOP3A JUMPER 1,4,6
NOTE: The IOP3A
must be configured
in supervision mode.
DOWNLOAD CONFIGURATION

## CONTROL PANELS

## EST3 NETWORK ACCESSORIES

Network Short Haul Modem Communications Interface 3-NSHM1 single modem connection 3-NSHM2 two modem connection


Network B to A wiring using the NSHM1


Network A to B wiring using the NSHM1


Network wiring using the NSHM2


## CONTROL PANELS

EST3 NETWORK ACCESSORIES

IOP3A RS-232 Optical Isolator Card


Wiring diagram
continues on page 33


## CONTROL PANELS

EsT3 NETWORK ACCESSORIES

CDR-3 Coder


## CONTROL PANELS

## EST3 NETWORK ACCESSORIES

MTM-1 March Time Module


## CONTROL PANELS

## EST3 NETWORK ACCESSORIES

API-8/232ME Alphanumeric Pager Interface


GFD Fround Fault Detection Module


Other Accessories: PT-1S Serial Printer (see page 20 for wiring)

## CONTROL PANELS

## EST3 NETWORK ANNUNCIATORS

Remote Annunciator

To Backbox


Use EST3 remote annunciators wherever a compact system status display is needed. Annunciator configurations include: LCD only display, LED only display, or combination LED and LCD display in a single enclosure. Display and control is provided by the 3-LCD and Control Display Modules.

Control/Display modules install over any annunciator support module, maximizing annunciator design flexibility. A lamp test feature can program to any spare control switch. If a 3-LCD display is installed in the annunciator, simply operate the Alarm Silence and Trouble Silence switches simultaneously to lamp test all LEDs. 3-REMICA remote microphones can also be installed in annunciator cabinets.

## CONTROL PANELS

## EST3 NETWORK ANNUNCIATORS

Envory Graphic Annunciator



ENVOY graphic annunciators and smoke control panels are designed to present complex status and control information in an easy to understand package. The design of ENVOY products permits users to rapidly determine system status and easily operate associated system controls. The addition of system LCD annunciators and remote microphones can turn ENVOY into a complete fire command station.

For wiring information see the EST3 wiring diagram on page 24.

## CONTROL PANELS

## FIREWORKS

FireWorks Four Quadrant Display


FireWorks is a family of software and hardware options designed to work in concert with EST life safety and property protection systems. FireWorks provides a simple user interface, taking what could be an overwhelmingly large amount of information and presenting it in an easy-to-understand format. FireWorks does this by dividing major system functions into easy-to-manage quadrants. These quadrants make the system very intuitive to use because information is presented logically. To further enhance usability, FireWorks is event driven. This greatly increases the user's ability to deal with system events by eliminating the confusion sometimes experienced when systems present all information at once. FireWorks automatically prioritizes the events for the user in an Event Quadrant. Here the highest priority event is displayed first, and the lowest priority event is displayed last. This allows the user to quickly determine which events warrant the most immediate attention.

## CONTROL PANELS

## FIREWORKS WIRING DIAGRAM



## BOOSTER POWER SUPPLIES

## REMOTE BOOSTER POWER SUPPLY



The Remote Booster Power Supply is a self-contained 24 Vdc power supply designed to augment fire alarm audible and visual power requirements. The booster contains all of the necessary circuits to monitor and charge batteries, control and supervise four Class B or two Class A NAC circuits and monitor two controlling inputs from external sources. Simple switch selection provides a wide variety of operational configurations. Each remote booster power supply is supplied with its own enclosure providing ample space for additional interface modules and battery compartment. The BPS is available in either a 6.5 or 10 amp version @ 24 Vdc . The Remote Booster Power Supply provides additional power for audible and visual devices when constrained by system capacity or site application. Fault conditions detected by the BPS will open the main panel's NAC. This initiates a trouble condition and eliminates the need to wire a separate trouble contact back to the control panel. During alarm condition, detected faults are overridden and the main panel's default configuration is restored. The BPS's default output configuration is continuous 24 Vdc on all NACs. This output is typically used to drive visual BPS notification appliance circuits.

see EST3 reference table on page 22

## INITIATING DEVICES

## INITIATING DEVICES (CONVENTIONAL)

Manual Pull Stations


Metal Manual Pull Stations
270 Series: Single action, break glass. Available with normally open, normally closed or combination NO/NC contacts. 270 Series with screw terminals for field connection. 270A Series with 6 -inch wire leads.
270P Series: Break glass, normally open pre-signal station. Screw terminals.


270
Lexan Manual Pull Stations
The EST 276B/277B series includes single and double action stations, both available with either terminals or 6 " wire leads for field wiring connections. All types can be either pre-signal or general alarm and are available with single or double pole alarm contacts that can be normally open, normally closed or a combination of both.
276B Series: Single action w/ terminals
277B Series: Single action w/ wire leads
278B Series: Double action w/ terminals 279B Series: Double action w/ wire leads
Institutional Manual Stations $\quad 1534-1$

1534-1: Key-operated Station (deters tampering)
Hazadordous Location Manual Station
XAL-53: rugged double-action fire alarm

1534-1


276B/277B


## INITIATING DEVICES

## ECSERIES DETECTORS

Smoke and Heat Detectors
EC30U-3: Low-profile Plug-in Photoelectric Detector for all fire types.
EC20FTU-3: Low-profile Plug-in Fixed Temperature Heat Detector for locations that experience fluctuations in ambient temperature (laundries, industries).
EC2ORRU-3: Low-profile Plug-in Rate-of-Rise Heat Detector for locations where ambient temperature is relatively constant but where steam and smoke are present (kitchens, shower rooms).

Duct Detector
EC30DU-3: Photoelectric Duct Smoke
Detector Accessories


CSBU-1: Standard Detector Base 6260A-CU: Duct Smoke Detector

EC-LED: Remote Alarm LED
EC-DTS: Remote LED/Test Station


CSBU-1 wiring to EC-LED or C-DTS


Diagrams are for reference only. Consult the appropriate installation sheet for wiring details.

## INITIATING DEVICES

## SUPERDUCT

The SuperDuctfour-wire duct is designed specifically for rooftop HVAC systems. The detector assembly provides easy access to the smoke sensor, its wiring connections, sample and exhaust tube fittings, and the smoke chamber itself. Air enters the assembly by means of an air sampling tube (ordered separately), and exits by means of a six-inch exhaust tube (included).


Fire alarm initiating circuit wiring


## INITIATING DEVICES

## beAM DETECTORS

Fireray 200 Beam Detector


Reflective Beam Smoke Detector (EC-50R/-100R)


## Single Zone Wiring

The EC-50R/-100R comprises a transmitter and receiver in a single enclosure and is usually installed between 19 and 24 inches below the ceiling.

Low-level Tester Wiring


Diagrams are for reference only.
Consult the appropriate installation sheet for wiring details.

## NOTIFICATION APPLIANCES

## GENESIS

Genesis (wall mount) Chimes, Chime-strobes: GC-HVDM
The Genesis line of signals are the smallest, most compact audible-visible emergency signaling devices in the world. Speaker-strobes feature $15,30,75$ or 110 candela output, selectable with a conveniently-located switch on the bottom of the device. All Genesis strobes self-synchronize when installed with the Genesis Signal
 Master or SIGA-CC1S module.

Genesis chimes automatically pulse at 60 strokes per minute, when steady (nonstroked) voltage is applied, or may be field-configured for temporal output. When installed with a GIM Signal Master Module, the chime may also be field-configured for coded operation, which enables the chime output to match the rate that voltage is applied to the circuit. Peak output level is 79 dBA (peak). The chime may be set for low dB output with a jumper cut that reduces sound output by about 5 dB .

Models:
G1-CVM Genesis Chime-Strobe (selectable 15, 30, 75, or 110 cd output, selectable high/low dB output)
GI-C Genesis Chime (selectable high/low dB output)
GIF-CVM Genesis Chime-Strobe (selectable 15, 30, 75, or 110 cd output, selectable high/low dB output) - with "FIRE" marking
GIF-C Genesis Chime (selectable high/low dB output) - with "FIRE" marking
SIGA-CCIS Intelligent Synchronization Output Module (2-gang)
SIGA-MCCIS Intelligent Synchronization Output Module (Plug-in UIO)


Chime Wiring

## NOTIFICATION APPLIANCES

## GENESS

Genesis (ceiling mount) Field Configurable Horns, Strobes, Synchronization module

Models:
GC-HDVM Genesis Ceiling/Wall Horn-Strobe (selectable 15, 30, 75, or 95 cd output)
GIM-RM Genesis Signal Master - Remote Mount (1-gang)
GC-VM Genesis Ceiling Strobe (selectable 15, 30, 75, or 95 cd output)
GCF-VM Genesis Ceiling Strobe (selectable 15, 30, 75, or 95 cd output) with FIRE marking.
SIGA- CCIS Intelligent Synchronization Output Module (2-gang)
SIGA- MCCIS Intelligent Synchronization Output Module (Plug-in UIO)


## NOTIFICATION APPLIANCES

## GENESS

Genesis (wall mount) Speakers
All Genesis speakers include a DC blocking capacitor to allow electrical supervision of the audio distribution circuit. Models for $25 \mathrm{~V}_{\text {RUS }}$ and $70 \mathrm{~V}_{\text {RUS }}$ circuits are available. $1 / 4 \mathrm{~W}$ to 2 W operation is selectable with a conveniently-located switch on the bottom of the device.


Models:
G4-S2VM 25 Volt Speaker-strobe with selectable $15,30,75$, or 110 cd output
G4-S7VM 70 Volt Speaker with selectable $15,30,75$, or 110 cd output
G4-S2 25 Volt Speaker
G4-S7 70 Volt Speaker
GIM-RM Synchronization Output Module (1-gang)


## NOTIFICATION APPLIANCES

## GENESS

Genesis (eeiling mount) Field Configurable Speakers and Speaker/Strobes


Models:
GC-S2VM 25 Volt Speaker-strobe, c/w selectable 15, 30, 75, or 95 cd output
GC-S7VM 70 Volt Speaker-strobe, c/w selectable 15, 30, 75, or 95 cd output
GC-S2 25 Volt Speaker with selectable $1 / 4,1 / 2,1$, or 2 watt taps.
GC-S7 70 Volt Speaker with selectable $1 / 4,1 / 2,1$, or 2 watt taps.

## NOTIFICATION APPLIANCES

## INTEGRTTY

964 and 965 Series Speaker and Speaker/Strobe


These Speakers and Speaker/Strobes are available in either 4 inch or 8 inch size. 964 Series speakers connect to 25 Vrms audio circuits.
965 Series speakers connect to 70 Vrms audio circuits. The strobe must be connected to signal circuits which output a constant (not pulsed) 24 Vdc voltage.


Models ( $\mathrm{R}=$ round):

25 volt
964-1A-4R Speaker
964-5A-4R Speaker-Strobe, 15cd
964-7A-4R Speaker-Strobe, 15/75dd
964-3A-4R Speaker-Strobe, 30cd
964-8A-4R Speaker-Strobe, 110cd

70 volt
965-1A-4R Speaker
965-5A-4R Speaker-Strobe, 15cd
965-7A-4R Speaker-Strobe, 15/75cd
965-3A-4R Speaker-Strobe, 30cd
965-8A-4R Speaker-Strobe, 110cd

## NOTIFICATION APPLIANCES

## INTEGRTTY

964 and 965 Series Speaker and Speaker/Strobe


These Speakers and Speaker/Strobes are available in either 4 inch or 8 inch size. 964 Series speakers connect to 25 Vrms audio circuits.
965 Series speakers connect to 70 Vrms audio circuits. The strobe must be connected to signal circuits which output a constant (not pulsed) 24 Vdc voltage.

To Listed Fire
Alarm Control
Panel
(signal circuit)

KEY:S - - Speaker


CAUTION: Electrical supervision requires wire run to be broken at each device.

Models ( $S=$ square):
964-1A-4S same as those listed on page 49

## NOTIFICATION APPLIANCES

## INTEGRTTY

## Synchronized Strobes - 405 Series

405 Series strobes are available with $15 \mathrm{~cd}, 15 / 75 \mathrm{~cd}, 30 \mathrm{~cd}, 60 \mathrm{~cd}$, and 110 cd effective flash intensity and are fully compatible with Genesis signals.

405-5A-T Strobe, 15 cd
405-7A-T Strobe, 15/75
405-3A-T Strobe, 30 cd
405-6A-T Strobe, 60 cd
405-8A-T Strobe, 110 cd
Outdoor Listed Strobes
CS405-7A-T Strobe, 15/75, Outdoor
CS405-8A-T Strobe, 110 cd, Outdoor


Wiring for 405 and 202 Series Strobes


202 Series Mini-strobes
202 Series strobes are available with $15 / 75 \mathrm{~cd}$, and 110 cd effective flash intensity. They are fully compatible with Genesis signals.

| 202-7A-T | Strobe $-15 / 75 \mathrm{~cd}$ |
| :--- | :--- |
| 202-8A-T | Strobe -110 cd |
| 203-8A-T | Strobe $-110 \mathrm{~cd}, 120$ Vac |



## NOTIFICATION APPLIANCES

## INTEGRITY

757 Series Speaker Strobes


Integrity strobes synchronize to the latest UL 1971 requirements when used with an external control module (G1M or SIGA-CCIS). High efficency speaker produces a loud 90 dBA at 2 watts. Easy to select for $1 / 4,1 / 2,1$, or 2 watt operation. Integrity speakers are supplied with a DC Blocking Capacitor for audio circuit supervision.


## NOTIFICATION APPLIANCES

## INTEGRTTY

757 Series Re-entrant Speaker and Speaker /Strobes (outdoor use)


## NOTIFICATION APPLIANCES

## INTEGRTTY

757 Series Temporal Horn and Horn-strobe


Integrity strobes synchronize to the latest UL 1971 requirements when used with an external control module (G1M or SIGA-CCIS). Audible output is adjustable - select temporal or continuous tones, and High setting for 98 dBA output or Low setting for 94 dBA sound output.


Models
757-1A-T Temporal Horn
757-7A-T Temporal Horn-Strobe, 15/75cd
757-8A-T Temporal Horn-Strobe, 110cd

## NOTIFICATION APPLIANCES

## hazardous location Notification appliances

Weather/Explosion proof heat detectors Series 500 heat sensors are designed for use in applications requiring protection against weather, moisture (internal condensation), and explosive atmospheres. Heat sensors are normally-open devices designed to close an electrical circuit upon activation. Sensors use dual action, electric fire detection thermostats that employ two independent methods of detection: rate-of-rise and fixed temperature.

Hazardous Location, Weatherproof Strobes 106DEX hazardous location strobes are diode polarized life safety signaling appliances designed for installation in hazardous environments.

Hazardous Location Multiple Tone Signals


EST 5533BD signals are heavy-duty industrial, tone-selectable, signaling devices capable of producing volume-controlled, high-decibel tones. The signals accept up to two contact closures and deliver two audible output signals selected from the 19 available tones.

Hazardous Location Horns and Sirens The 5522D-AW (Horn) and the 5523D-AW (Siren) are extremely high decibel, high-performance diodepolarized signaling appliances intended for fire alarm
 and life safety applications. The signals operate with very low current consumption and do not require extra current on start-up.


Hazardous Location Horns
888D and 889D: diode-polarized, heavy duty, high decibel vibrating horns intended for use in life safety systems in hazardous (classified) locations.

## SIGNATURE MODULES

## MANUAL PULL STATION WITH MODULE

270 Series Series One- and Two-stage Pull Stations


Note: Wiring is the same for both the SIGA-270 and the SIGA-278


## SIGNATURE MODULES

## FIRE INPUT MODULES (GANG MOUNT)

SIGA-CTI, SIGA-CT2, SIGA-WTM, SIGA-MMI, SIGA-UM
Modules are intelligent analog addressable devices used to connect one or two Class B normally-open Alarm, Supervisory, or Monitor type dry contact Initiating Device Circuits (IDC). Models:
SIGA-CTI Single Input Module
SIGA-CT2 Dual Input Module
SIGA-MMI Monitor Module
SIGA-WTM Waterflow/Tamper Module
SIGA-UM Universal Class A/B Module


Single Input Module (SIGA-CTI shown above)


## SIGNATURE MODULES

## FIRE INPUT MODULES (UIO MOUNT)

Input Modules SIGA-UIO (2R/6/6R), MCT1, MCT2, MAB
SIGA-UIO2R Universal Input-Output Module Board w/Riser Inputs — Two Module Positions
SIGA-UIO6R Universal Input-Output Module Board w/Riser Inputs - Six Module Positions
SIGA-UIO6 Universal Input-Output Module Board - Six Module Positions

SIGA-MCT2 Dual Input Plug-in (UIO) Module
SIGA-MAB Universal Class A/B Module (Plug-in)


## SIGNATURE MODULES

## SECURITY NNPUT MODULES

## Input Modules SIGA-SEC-2, SIGA-MD

The SIGA-SEC2 Dual Input Security Module is an intelligent analog addressable device used to connect one or two normally-open or normallyclosed dry contact security circuits.


The SIGA-MD is a Passive Infrared (PIR) motion detection module that connects directly to the Signature loop.


## SIGNATURE MODULES

## OUTPUT MODULES (GANG MOUNT)

The SIGA-UM Universal Class A/B Module is installed to a standard North American 2-gang electrical box. Separate I/0 and data loop connections are made to each module. The SIGA-UM may be used to connect any one of the following: two Class B or one Class A Initiating Device Circuits; one Class A or B Notification Appliance Circuit; one Class A or B Circuit for 2-wire Smoke Detectors; one Form "C" (NO/NC) Dry Output Contact Relay.

SIGA-CCI Single Input Signal Modules and SIGA-CC2
 Dual Input Signal Modules are used for connecting, upon command from the loop controller, supervised Class B signal or telephone circuits to their respective power inputs. The power inputs may be polarized 24 Vdc to operate audible and visible signal appliances or 25 and 70 VRMS to operate audio evacuation speakers and firefighter's telephones. The actual operation of the SIGA-CCI and SIGA-CC2 is determined by the "personality code" selected by the installer.


## SIGNATURE MODULES

## OUTPUT MODULES (GANG MOUNT)

SIGA-CCl Wiring


SIGA-UM Single Output Module (Personality Code 15 or 16)


## SIGNATURE MODULES

## OUTPUT MODULES (GANG MOUNT)

SIGA-CR Control Relay, SIGA-CRR Polarity Reversal Relay Modules
The SIGA-CR Control Relay Module provides a Form " $C$ " dry relay contact to control external appliances such as door closers, fans, dampers etc. This device does not provide supervision of the state of the relay contact. Instead, the on-board microprocessor ensures that the relay is in the proper ON/OFF state. Upon command from the loop controller, the relay activates the normally open or normally-closed contact. The SIGA-CRR Polarity Reversal Relay Module provides a Form " $C$ " dry relay contact to power and activate a series of SIGA-AB4 Audible Sounder Bases. Upon command from the Signature loop controller, the SIGA-CRR reverses the polarity of its 24 Vdc output, thus activating all Sounder Bases on the data loop.


Diagrams are for reference only. Consult the appropriate installation sheet for wiring details.

## SIGNATURE MODULES

## OUTPUT MODULES (UIO MOUNT)

Universal Input/Output Module Motherboards
Signature Series Universal Input-Output Module Motherboards provide mounting and wiring terminations for up to six Signature Series plug-in UIO (SIGA-" $M^{\prime \prime}$ series) modules.


SIGA-UIO2R Universal Input-Output Module Board w/Riser Inputs - Two Module Positions


SIGA-UIO6R Universal Input-Output Module Board w/Riser Inputs - Six Module Positions


SIGA-UIO6 Universal Input-Output Module Board - Six Module Positions

## SIGNATURE MODULES

## OUTPUT MODULES (UIO MOUNT)

SIGA-MAB
The SIGA-MAB is a Universal Class A/B Module that takes advantage of the modular flexibility and easy installation that characterizes all UIO modules. Two- and six-module UIO motherboards are available. These can accommodate individual risers for each on-board module, or shared risers in any combination with their UIO modules. All wiring connections are made to terminal blocks on the motherboard. UIO assemblies may be mounted in EST enclosures. The SIGA-MAB may be used to connect any one of the following:

- one Class B or one Class A Initiating Device Circuit
 - one Class A or B Notification Appliance Circuit

$645 \pi$


## SIGNATURE MODULES

## OUTPUT MODULES (UIO MOUNT)

## SIGA-MCC1/MCC2

## SIGA-MCC1 Single Input Signal Modules and SIGA-MCC2

 Dual Input Signal Modules are intelligent analog addressable devices used for connecting, upon command from the loop controller, supervised Class B signal or telephone circuits to their respective power inputs. The power inputs may be polarized 24 Vdc to operate audible and visible signal appliances or 25 and 70 VRMS to operate audio evacuation speakers and firefighter's telephones.

## SIGNATURE MODULES

## OUTPUT MODULES (UIO MOUNT)

SIGA-MCC2 Wiring


SIGA-MCC2 Dual Input Signal Module

## SIGNATURE MODULES

## OUTPUT MODULES (UIO MOUNT)

## SIGA-MCR/MCRR

The SIGA-MCR Control Relay Module provides a Form " $C^{\prime \prime}$ dry relay contact to control external appliances such as door closers, fans, dampers etc.


The SIGA-MCRR Polarity Reversal Relay Module provides a Form " $C^{\prime \prime}$ dry relay contact to power and activate a series of SIGA-AB4 Audible Sounder Bases.


## SIGNATURE MODULES

## FRREMENSTELEPHONENARDEN STATION

Firemen's Telephones
6833-1 Portable Handset Receptacle


## SIGNATURE MODULES

## RELEASING MODULE

## SIGA-REL

The SIGA-REL is an analog addressable module that communicates directly with the fire alarm panel Signature loop controller. The SIGA-REL controls sprinkler, pre-action and deluge systems, and may also be used to release extinguishing agents such as $\mathrm{CO}_{2^{\prime}}$ Halon, or foam.


## SIGNATURE MODULES

## MODULE (TWO-GANG STANDARD MOUNT)

## SIGA-IM Fault Isolator Module

The SIGA-IM Isolator Module enables part of the Signature data loop to continue operating should a short circuit occur. The module can be wired into a Class A data loop at any point.


Signature Loop Controller


## SIGNATURE MODULES

## AUDIO AMPLIFIERS AND POWER SUPPIY

SIGA-AA $(30,50)$ Intelligent Audio Amplifiers
SIGA amplifiers are high efficiency switch mode audio amplifiers available in 30 and 50 watt sizes:
SIGA-AA30 30 Watt Amplifier


SIGA-AA50 50 Watt Amplifier

$\triangle$ Twisted-Shielded Pair Wire
2. One Twisted Pair Wire, Shield optional

Intelligent Auxiliary Power Supply
The SIGA-APS power supply is a switch mode supply that provides additional powerfor any Fire Alarm Control Panel that contains a Signature Data Circuit.


## SIGNATURE SERIES

## DETECTORS

## Intelligent Multisensor Detectors

Signature Series Intelligent Multisensor Detectors gather analog information from their smoke sensing elements and convert it into digital signals. Each detector's on-board microprocessor measures and analyzes these signals and compares the information to historical readings and time patterns to make an alarm decision. Digital filters remove signal patterns that are not typical offires.


SIGA-ISIntelligentlonization Smoke Detector: single smoke sensing element.
SIGA-PS Intelligent
Photoelectric Smoke Detector: single smoke sensing element. SIGA-PHS Intelligent3D Multisensor Detector: two fire sensing elements (photoelectric and heat).
SIGA-IPHS Intelligent 4D
Multisensor Detector: three fire
sensing elements (ionization, photoelectric, and heat).
SIGA-HFS and SIGA-HRS Intelligent Heat
Detectors gather analog information from their fixed temperature and/or rate-of-rise heat sensing elements and converts it into digital signals.

Available bases: SIGA-SB(4) Standard Base SIGA-AB4G Audible Sounder Base (wiring shown on this page) SIGA-RB(4) Relay Base
SIGA-IB(4) Isolator Base
(wiring shown on page 69)

Sounder Base Wiring
 or Previous Device

## SIGNATURE SERIES

## DUCT DETECTORS

SIGA-DMP Duct Detector Mounting Plate SIGA-DH Duct Detector Housing

Provides convenient mounting of Signature Series intelligent smoke detectors in ducts, raised floor or plenum applications. The 7 -inch plate may also be installed in low velocity ducts with a maximum width of 36 inches and a maximum height of 36 inches. Includes a 4-inch square junction box for wiring connections.


SIGA-DMP Compatible with the following: SIGA-PS, SIGA-PHS, SIGA-IPHS, SIGA-SB Standard Base, SIGA-RB Relay Base, SIGA-IB Isolator Base.


## SIGNATURE SERIES

## DETECTORACCESSORIES

Wiring: Standard Detector Base to SIGA-LED


Wiring: Duct Detector Test Station SIGA-DTS


SIGA-DTS

Diagrams are for reference only.
Consult the appropriate installation sheet for wiring details.

## REFERENCE SECTION

## 24 VOC NAC WIRELENGTH

General Information
The 24 Vdc notification appliance circuits must be a minimum of 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) pair. Terminals on FireShield, QuickStart and EST3 will support 18-12 AWG wire.
Circuit length limits are determined using the maximum allowable circuit resistance and cable manufacturer's specifications.

Circuit capacity
FireShield notification appliance circuits are rated at 1.5 amps each at 24 Vdc FWR. QuickStart notification appliance circuits are rated at 1 or 2 amps each at 24 Vdc FWR. EST3 notification appliance circuits are rated at 3.5 amps each at 24 Vdc regulated.

Table A-1: Wire resistance ratings to use for wire length calculations

| Wire Size | Resistance per 1000 ft pair (ohms) |
| :---: | :---: |
| 18 AWG / $\left(0.75 \mathrm{~mm}^{2}\right)$ | 13.0 |
| $16 \mathrm{AWG} /\left(1.0 \mathrm{~mm}^{2}\right)$ | 8.0 |
| $14 \mathrm{AWG} /\left(1.50 \mathrm{~mm}^{2}\right)$ | 5.2 |
| $12 \mathrm{AWG} /\left(2.5 \mathrm{~mm}^{2}\right)$ | 3.5 |

## REFERENCE SECTION

## 24 VDC NAC WIRE LENGTH

NAC Voltage Drop Calculations
Notification appliance circuit voltage drop calculation

| Circuit length |  | Total circuit current [2] |  | Wire resistance <br> per $1000 \mathrm{ft}[1]$ |  | Voltage drop |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| feet | x | amps | x | Ohms | $\div 1000=$ |  |


| Panel <br> voltage |  | Voltage <br> drop |  | End of line <br> voltage $[3]$ |
| :---: | :---: | :---: | :---: | :---: |
| $[4]$ | - |  | $=$ |  |


| Voltage <br> drop |  | Panel <br> voltage |  | Voltage <br> drop $\%$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\div$ | $[4]$ | $=$ |  |

## FireShield voltage drop calculation notes

[1] Use wire resistance from Table 1.
[2] Use the 20 Vdc VFWR Average/Mean Operating Currentratings found on the installation or catalog sheet of each device.
[3] Cannot drop below 17 Vdc .
[4] 18.6 V for 230 V at $50 \mathrm{~Hz}, 18.8 \mathrm{~V}$ for 230 V at $60 \mathrm{~Hz}, 18.9 \mathrm{~V}$ for 120 V at 60 Hz

## QuickStart voltage drop calculation notes

[1] Use wire resistance from Table 1.
[2] Use the 20 Vdc VFWR Average/Mean Operating Current ratings found on the installation or catalog sheet of each device.
[3] Cannot drop below 17 Vdc .
[4] 17.5 Vdc

## EST3 voltage drop calculation notes

[1] Use wire resistance from Table 1.
[2] Use the 20 Vdc Average/Mean Operating Current ratings found on the installation or catalog sheet of each device.
[3] Cannot drop below 17 Vdc .
[4] 21.4 Vdc
Note: Due to expected changes by UL the calculations on these two pages and the load currents for all audio and visual devices are expected to be revised by the end of 2005.

## REFERENCE SECTION

## 24 VOC NAC WIRELENGTH

Notification appliance circuit maximum wire length calculation
Use this worksheet to determine the maximum wire length of a notification appliance circuit. Fill in one worksheet for each NAC connected to the panel.

Maximum signal loss allowed [1]


Wire resistance per $1000 \mathrm{ft} /$ pair [2] $\div \square$ ohms


Total operating current required $[3] \div$ $\square$ A

Maximum circuit length $\square$ ft

## FireShield maximum wire length calculation notes

[1] 1.6 V for 230 V at $50 \mathrm{~Hz}, 1.8 \mathrm{~V}$ for 230 V at $60 \mathrm{~Hz}, 1.9 \mathrm{~V}$ for 120 V at 60 Hz
[2] Use wire resistance from Table 1.
[3] Use the 20 Vdc VFWR Average/Mean Operating Currentratings found on the installation or catalog sheet of each device.

## QuickStart maximum wire length calculation notes

[1] For worst case estimates, assume a 1.5 V line loss and all appliances are clustered at the end of the circuit.
[2] Use wire resistance from Table 1.
[3] Use the 20 Vdc VFWR Average/Mean Operating Currentratings found on the installation or catalog sheet of each device.

## EST3 maximum wire length calculation notes

[1] For worst case estimates, assume a 3.4 V line loss and all appliances are clustered at the end of the circuit.
[2] Use wire resistance from Table 1.
[3] Use the 20 Vdc Average/Mean Operating Current ratings found on the installation or catalog sheet of each device.

## REFERENCE SECTION

## 250 R 70 VRMS NAC WIRE LENGTH

## 25 Vrms or 70 Vrms NAC wire length

The maximum allowable wire length is the farthest distance that a pair of wires can extend from the amplifier to the last speaker on the notification appliance circuit without losing more than 0.5 dB of signal. Calculating the maximum allowable wire length using this method ensures that each speaker operates at its full potential.
Several factors influence the maximum allowable wire length:

- Wire size
- Output signal level of the amplifier driving the circuit
- Number of speakers installed on the circuit

To calculate the maximum allowable wire length for a 0.5 dB loss, use the following formula:

$$
\text { Max. length }=\frac{59.25 \times \text { Amplifier Output }{ }^{2}}{\text { Wire Resistance } \times \text { Circuit Load }}
$$

where:

- Amplifier output is the signal level in Vrms supplied by the amplifier driving the circuit
- Circuit load is the total watts required by the audio circuit
- Wire resistance is the resistance rating of the wire per 1000 ft pair, see Table.

For example, the maximum allowable wire length for an audio circuit consisting of a 40 W , 25 Vrms amplifier driving thirty 1 -watt speakers, using 18-guage wire would be 95 ft .

$$
94.95=\frac{59.25 \times 25}{13 \times 13}
$$

$B-1$ and $B-2$ gives the maximum allowable wire lengths for various wire sizes and loads. Use B-1 when designing circuits for amplifiers set for 25 Vrms output. Use B-2 when designing circuits for amplifiers set for a 70 Vrms output.

## REFERENCE SECTION

## 250 R 70 VRMS NAC WIRE LENGTH

$\mathrm{B}-1$ : Maximum allowable length at $25 \mathrm{Vrms}, 0.5 \mathrm{~dB}$ loss

| Circuit Load Requirement |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wire Size | 15 W |  | 20 W |  | 30 W |  | 40 W |  | 90 W |  | 120 W |  |
|  | ft | m |
| $\begin{aligned} & 18 \text { AWG } \\ & \left(0.75 \mathrm{~mm}^{2}\right) \end{aligned}$ | 190 | 58 | 142 | 43 | 95 | 29 | 71 | 22 |  |  |  |  |
| 16 AWG $\left(1.0 \mathrm{~mm}^{2}\right)$ | 309 | 94 | 231 | 70 | 154 | 47 | 116 | 35 | 51 | 16 | 39 | 12 |
| $\begin{aligned} & 14 \mathrm{AWG} \\ & \left(1.5 \mathrm{~mm}^{2}\right) \end{aligned}$ | 475 | 145 | 356 | 109 | 237 | 72 | 178 | 54 | 79 | 24 | 59 | 18 |
| $\begin{aligned} & 12 \text { AWG } \\ & \left(2.5 \mathrm{~mm}^{2}\right) \end{aligned}$ | 772 | 235 | 579 | 176 | 386 | 118 | 289 | 88 | 129 | 39 | 96 | 29 |

B -2: Maximum allowable length at $70 \mathrm{Vrms}, 0.5 \mathrm{~dB}$ loss

| Circuit Load Requirement |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wire Size | 15 W |  | 20 W |  | 30 W |  | 40 W |  | 90 W |  | 120 W |  |
|  | ft | m |
| $\begin{aligned} & 18 \text { AWG } \\ & \left(0.75 \mathrm{~mm}^{2}\right) \end{aligned}$ | 1489 | 454 | 1117 | 340 | 744 | 227 | 558 | 170 | 248 | 76 | 186 | 57 |
| $\begin{array}{\|l} \hline 16 \mathrm{AWG} \\ \left(1.0 \mathrm{~mm}^{2}\right) \end{array}$ | 2420 | 738 | 1815 | 553 | 1210 | 369 | 907 | 276 | 403 | 123 | 302 | 92 |
| $\begin{aligned} & 14 \mathrm{AWG} \\ & \left(1.5 \mathrm{~mm}^{2}\right) \end{aligned}$ | 3722 | 1134 | 2792 | 851 | 1861 | 567 | 1396 | 426 | 620 | 189 | 465 | 142 |
| $\begin{aligned} & 12 \text { AWG } \\ & \left(2.5 \mathrm{~mm}^{2}\right) \end{aligned}$ | 6049 | 1844 | 4537 | 1383 | 3024 | 922 | 2268 | 691 | 1008 | 307 | 756 | 230 |

## REFERENCE SECTION

## SIGNATURE DATA CRRCUIT MAXIMUM WIRE LENGTH CALCULATIONS

## QSI, QS4 and EST3

Circuit resistance and capacitance determines the maximum length of a Signature data circuit. Circuit resistance affects the wire length of the longest circuit branch. Circuit capacitance affects the total amount of wire that can be used on the circuit. Note: The design of the Signature data circuit must not exceed either of the two measurements.

There are no restrictions placed on the wiring used for the Signature data circuit. Longer wire runs may be obtained using standard (non-twisted, non-shielded) wire pairs.
Several factors influence the maximum allowable branch length:

- Wire gauge and type
- Number of Signature detectors and modules installed on the branch
- Number of SIGA-UMs configured for 2-wire smoke detectors installed on the branch

Determining the maximum allowable branch length
The maximum branch length is the wire distance measured from the Signature controller module to the last device on the longest circuit path as shown on the next page.
To determine the maximum allowable length of a Signature data circuit branch:

1. Identify the device located farthest from the Signature controller.
2. Determine the number of Signature detectors, modules, and SIGA-UMs configured for 2 -wire smokes that lie on the same conductive path between the device identified in step 1 and the Signature controller.
3. Calculate the number of detector and module addresses. Some Signature modules require two addresses.
4. Determine the size of the wire used to construct the circuit.
5. Find the maximum allowable wire distance for the longest branch in the lookup tables as follows:
If no SIGA-UMs are installed, use Table C-2
If $1-5$ SIGA-UMs are installed, use Table C-3
If 6-10 SIGA-UMs are installed, use Table C-4
If 11-15 SIGA-UMs are installed, use Table C-5

## REFERENCE SECTION

## SIGNATURE DATA CRRCUIT MAXIMUM WIRE LENGTH CALCULATIONS

Use this worksheet to determine the maximum amount of wire you can use to construct a Signature loop.
Step 1: Calculate the total amount of wire you can used based on the cable manufacturer's capacitance per foot rating. Total amount of wire shall not exceed the values listed in Table.

Determining the total loop length
The total loop length is the sum of the lengths of all the wire segments installed in the data circuit.


The total length of all the cable installed in the Signature data circuit can not exceed the values listed below:

Table C-1: Maximum amount of wire you can use to construct a Signature loop

|  | Wire Size |  |  |
| :--- | :---: | :---: | :---: |
| Wire type | 14 AWG | 16 AWG | 18 AWG |
| Twisted pair | $13,157 \mathrm{ft}(4,010 \mathrm{~m})$ | $13,888 \mathrm{ft}(4,233 \mathrm{~m})$ | $20,000 \mathrm{ft}(6,096 \mathrm{~m})$ |
| Twisted-shielded pair | $5,952 \mathrm{ft}(1,814 \mathrm{~m})$ | $6,098 \mathrm{ft}(1,859 \mathrm{~m})$ | $8,621 \mathrm{ft}(2,628 \mathrm{~m})$ |
| Non-twisted, <br> non-shielded pair | $20,000 \mathrm{ft}(6,096 \mathrm{~m})$ | $20,000 \mathrm{ft}(6,096 \mathrm{~m})$ | $20,000 \mathrm{ft}(6,096 \mathrm{~m})$ |

If the cable manufacturer's data indicates the capacitance per foot of the cable, the following method may be used to determine the maximum total loop length.
Note: In no case may the total loop length of a Signature data circuit exceed 20,000 feet (6,098 meters).

## REFERENCE SECTION

## SICNATURE DATA CRRCUIT MAXIMUM WIRE LENGTH CALCULATIONS

$$
L_{M a x}=\frac{500,000}{C_{p f F}}
$$

where: $\quad L_{M a x}=$ maximum total cable length in feet
$C_{p f F t}=$ Cable capacitance in picofarads per foot
Note: A short circuit on a Signature data circuit can disable the entire circuit. In order to limit the effect of a single short circuit on the SDC, SIGA-IB Isolator Bases or SIGAIM Isolator modules can be installed at strategic points in the circuit.

Step 2: Use Tables C-2, C-3, C-4, and C-5 to determine the longest allowable circuit path based on wire size and type, and the number of detector, module, SIGA-UMs or -MABs installed on the loop.
In the illustration below, the longest circuit path (shown in bold lines) is 1240 ft
( 377.95 m ). The total amount of wire comprising the loop is $1740 \mathrm{ft}(530.35 \mathrm{~m}$ ).


Table C-2 through Table C-5 provide the maximum allowable branch length for any detector, module, SIGA-UM, and wire gauge combination. Using the wire distances specified in the tables ensures that the circuit does not exceed the maximum circuit resistance of the Signature data circuit.
Note: To calculate the wire distance with respect to circuit resistance, the tables assume that the circuit is end-loaded (all devices are clustered more towards the end of the circuit) and the circuit uses standard non-shielded wire.

## REFERENCE SECTION

## SIGNATURE DATA CIRCUIT MAXIMUM WIRE LENGTH CALCULATIONS

Table C-2: Longest allowable circuit path with 0 SIGA-UMs or SIGA-MABs configured for 2-wire smokes

| Signature detector addresses | Signature module addresses | Maximum wire distance using nontwisted, nonshielded wire pairs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 18 AWG |  | 16 AWG |  | 14 AWG |  |
|  |  | $f$ | m | ft | m | $f$ | m |
| 1-25 | 0 | 7437 | 2267 | 11815 | 3601 | 18792 | 5728 |
| 26-50 | 0 | 7038 | 2145 | 11180 | 3408 | 17782 | 5420 |
| 51-75 | 0 | 6638 | 2023 | 10545 | 3214 | 16772 | 5112 |
| 76-100 | 0 | 6238 | 1901 | 9910 | 3021 | 15762 | 4804 |
| 101-125 | 0 | 5839 | 1780 | 9275 | 2827 | 14752 | 4497 |
| 0 | 1-25 | 7267 | 2215 | 11544 | 3519 | 18361 | 5597 |
| 1-25 | 1-25 | 6867 | 2093 | 10909 | 3325 | 17351 | 5289 |
| 26-50 | 1-25 | 6467 | 1971 | 10275 | 3132 | 16342 | 4981 |
| 51-75 | 1-25 | 6068 | 1849 | 9640 | 2938 | 15332 | 4673 |
| 76-100 | 1-25 | 5668 | 1728 | 9005 | 2745 | 14322 | 4365 |
| 101-125 | 1-25 | 5268 | 1606 | 8370 | 2551 | 13312 | 4057 |
| 0 | 26-50 | 6697 | 2041 | 10639 | 3243 | 16921 | 5157 |
| 1-25 | 26-50 | 6297 | 1919 | 10004 | 3049 | 15911 | 4850 |
| 26-50 | 26-50 | 5897 | 1798 | 9369 | 2856 | 14901 | 4542 |
| 51-75 | 26-50 | 5498 | 1676 | 8734 | 2662 | 13891 | 4234 |
| 76-100 | 26-50 | 5098 | 1554 | 8099 | 2469 | 12881 | 3926 |
| 101-125 | 26-50 | 4698 | 1432 | 7464 | 2275 | 11871 | 3618 |
| 0 | 51-75 | 5906 | 1800 | 9383 | 2860 | 14923 | 4549 |
| 1-25 | 51-75 | 5250 | 1600 | 8340 | 2542 | 13265 | 4043 |
| 26-50 | 51-75 | 4633 | 1412 | 7360 | 2243 | 11707 | 3568 |
| 51-75 | 51-75 | 4051 | 1235 | 6435 | 1961 | 10235 | 3120 |
| 76-100 | 51-75 | 3498 | 1066 | 5558 | 1694 | 8839 | 2694 |
| 101-125 | 51-75 | 2973 | 906 | 4723 | 1440 | 7512 | 2290 |
| 0 | 76-100 | 3931 | 1198 | 6245 | 1903 | 9932 | 3027 |
| 1-25 | 76-100 | 3404 | 1037 | 5407 | 1648 | 8601 | 2621 |
| 26-50 | 76-100 | 2899 | 883 | 4605 | 1404 | 7324 | 2232 |
| 51-75 | 76-100 | 2413 | 735 | 3833 | 1168 | 6096 | 1858 |
| 76-100 | 76-100 | 1945 | 593 | 3089 | 942 | 4913 | 1498 |
| 101-125 | 76-100 | 1493 | 455 | 2371 | 723 | 3771 | 1149 |
| 0 | 101-125 | 2631 | 802 | 4180 | 1274 | 6649 | 2027 |
| 1-25 | 101-125 | 2165 | 660 | 3439 | 1048 | 5470 | 1667 |
| 26-50 | 101-125 | 1713 | 522 | 2721 | 829 | 4328 | 1319 |
| 51-75 | 101-125 | 1274 | 388 | 2023 | 617 | 3218 | 981 |
| 76-100 | 101-125 | 847 | 258 | 1345 | 410 | 2140 | 652 |
| 101-125 | 101-125 | 431 | 131 | 685 | 209 | 1089 | 332 |

## REFERENCE SECTION

## SICNATURE DATA CIRCUIT MAXIMUM WIRE LENGTH CALCULATIONS

Table C-3: Longest allowable circuit path with 1 to 5 SIGA-UMs or SIGA-MABs configured for 2 -wire smokes

| Signature <br> detector <br> addresses | Signature <br> module <br> addresses | Maximum wire distance using nontwisted, nonshielded wire pairs |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 18 AWG |  | 16 AWG |  | 14 AWG |  |  |
| $1-25$ | 0 | 6778 | 2066 | 10768 | 3282 | 17126 | 5220 |
| $26-50$ | 0 | 6131 | 1869 | 9741 | 2969 | 15492 | 4722 |
| $51-75$ | 0 | 5501 | 1677 | 8739 | 2664 | 13899 | 4236 |
| $76-100$ | 0 | 4885 | 1489 | 7760 | 2365 | 12342 | 3762 |
| $101-125$ | 0 | 4282 | 1305 | 6802 | 2073 | 10819 | 3298 |
| 0 | $1-25$ | 5353 | 1632 | 8504 | 2592 | 13525 | 4122 |
| $1-25$ | $1-25$ | 4720 | 1439 | 7498 | 2286 | 11926 | 3635 |
| $26-50$ | $1-25$ | 4100 | 1250 | 6513 | 1985 | 10359 | 3157 |
| $51-75$ | $1-25$ | 3491 | 1064 | 5546 | 1691 | 8821 | 2689 |
| $76-100$ | $1-25$ | 2893 | 882 | 4597 | 1401 | 7311 | 2228 |
| $101-125$ | $1-25$ | 2306 | 703 | 3663 | 1116 | 5826 | 1776 |
| 0 | $26-50$ | 3776 | 1151 | 5999 | 1829 | 9542 | 2908 |
| $1-25$ | $26-50$ | 3153 | 961 | 5009 | 1527 | 7966 | 2428 |
| $26-50$ | $26-50$ | 2539 | 774 | 4034 | 1230 | 6416 | 1956 |
| $51-75$ | $26-50$ | 1935 | 590 | 3075 | 937 | 4890 | 1491 |
| $76-100$ | $26-50$ | 1340 | 409 | 2130 | 649 | 3387 | 1032 |
| $101-125$ | $26-50$ | 754 | 230 | 1197 | 365 | 1905 | 581 |
| 0 | $51-75$ | 2491 | 759 | 3957 | 1206 | 6293 | 1918 |
| $1-25$ | $51-75$ | 1868 | 569 | 2967 | 904 | 4720 | 1439 |
| $26-50$ | $51-75$ | 1254 | 382 | 1992 | 607 | 3168 | 966 |
| $51-75$ | $51-75$ | 648 | 198 | 1030 | 314 | 1638 | 499 |
| $76-100$ | $51-75$ | 50 | 15 | 80 | 24 | 126 | 39 |
| $101-125$ | $51-75$ |  |  |  |  |  |  |
| 0 | $76-100$ | 1386 | 422 | 2201 | 671 | 3501 | 1067 |
| $1-25$ | $76-100$ | 760 | 232 | 1208 | 368 | 1921 | 586 |
| $26-50$ | $76-100$ | 143 | 44 | 227 | 69 | 361 | 110 |
| $51-75$ | $76-100$ |  |  |  |  |  |  |
| $76-100$ | $76-100$ |  |  |  |  |  |  |
| $101-125$ | $76-100$ |  |  |  |  |  |  |
| 0 | $101-125$ |  |  |  |  |  |  |
| $1-25$ | $101-125$ |  |  |  |  |  |  |
| $26-50$ | $101-125$ |  |  |  |  |  |  |
| $51-75$ | $101-125$ |  |  |  |  |  |  |
| $76-100$ | $101-125$ |  |  |  |  |  |  |
| $101-125$ | $101-125$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## REFERENCE SECTION

## SIGNATURE DATA CRRCUIT MAXIMUM WIRE LENGTH CALCULATIONS

Table C-4: Longest allowable circuit path with 6 to 10 SIGA-UMs or SIGA-MABs configured for 2-wire smokes

| Signature detector addresses |  | Maximum wire distance using nontwisted, nonshielded wire pairs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 18 AWG |  | 16 AWG |  | 14 AWG |  |
|  |  | ft | m | ft | m | ft | m |
| 1-25 | 0 | 5045 | 1538 | 8015 | 2443 | 12748 | 3886 |
| 26-50 | 0 | 4494 | 1370 | 7139 | 2176 | 11355 | 3461 |
| 51-75 | 0 | 3950 | 1204 | 6275 | 1913 | 9981 | 3042 |
| 76-100 | 0 | 3414 | 1040 | 5423 | 1653 | 8625 | 2629 |
| 101-125 | 0 | 2884 | 879 | 4581 | 1396 | 7286 | 2221 |
| 0 | 1-25 | 4106 | 1252 | 6523 | 1988 | 10375 | 3162 |
| 1-25 | 1-25 | 3542 | 1080 | 5627 | 1715 | 8950 | 2728 |
| 26-50 | 1-25 | 2985 | 910 | 4742 | 1445 | 7542 | 2299 |
| 51-75 | 1-25 | 2435 | 742 | 3868 | 1179 | 6152 | 1875 |
| 76-100 | 1-25 | 1891 | 576 | 3004 | 916 | 4778 | 1456 |
| 101-125 | 1-25 | 1353 | 412 | 2150 | 655 | 3419 | 1042 |
| 0 | 26-50 | 2869 | 874 | 4557 | 1389 | 7248 | 2209 |
| 1-25 | 26-50 | 2296 | 700 | 3648 | 1112 | 5802 | 1768 |
| 26-50 | 26-50 | 1730 | 527 | 2749 | 838 | 4372 | 1332 |
| 51-75 | 26-50 | 1170 | 357 | 1859 | 567 | 2957 | 901 |
| 76-100 | 26-50 | 617 | 188 | 979 | 299 | 1558 | 475 |
| 101-125 | 26-50 | 68 | 21 | 108 | 33 | 172 | 53 |
| 0 | 51-75 | 1796 | 547 | 2853 | 869 | 4537 | 1383 |
| 1-25 | 51-75 | 1214 | 370 | 1929 | 588 | 3067 | 935 |
| 26-50 | 51-75 | 638 | 195 | 1014 | 309 | 1613 | 492 |
| 51-75 | 51-75 | 69 | 21 | 109 | 33 | 173 | 53 |
| 76-100 | 51-75 |  |  |  |  |  |  |
| 101-125 | 51-75 |  |  |  |  |  |  |
| 0 | 76-100 | 833 | 254 | 1323 | 403 | 2105 | 642 |
| 1-25 | 76-100 | 242 | 74 | 385 | 117 | 613 | 187 |
| 26-50 | 76-100 |  |  |  |  |  |  |
| 51-75 | 76-100 |  |  |  |  |  |  |
| 76-100 | 76-100 |  |  |  |  |  |  |
| 101-125 | 76-100 |  |  |  |  |  |  |
| 0 | 101-125 |  |  |  |  |  |  |
| 1-25 | 101-125 |  |  |  |  |  |  |
| 26-50 | 101-125 |  |  |  |  |  |  |
| 51-75 | 101-125 |  |  |  |  |  |  |
| 76-100 | 101-125 |  |  |  |  |  |  |
| 101-125 | 101-125 |  |  |  |  |  |  |

## REFERENCE SECTION

## SICNATURE DATA CRRCUIT MAXIMUM WIRE LENGTH CALCULATIONS

Table C-5: Longest allowable circuit path with 11 to 15 SIGA-UMs or SIGA-MABs configured for 2 -wire smokes

| Signature detector addresses | Signature module addresses | Maximum wire distance using nontwisted, nonshielded wire pairs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 18 AWG |  | 16 AWG |  | 14 AWG |  |
|  |  | $f$ | m | $f$ | m | $f$ | m |
| 1-25 | 0 | 3931 | 1198 | 6245 | 1903 | 9932 | 3027 |
| 26-50 | 0 | 3427 | 1045 | 5444 | 1659 | 8659 | 2639 |
| 51-75 | 0 | 2928 | 892 | 4651 | 1418 | 7397 | 2255 |
| 76-100 | 0 | 2432 | 741 | 3864 | 1178 | 6145 | 1873 |
| 101-125 | 0 | 1941 | 592 | 3083 | 940 | 4903 | 1495 |
| 0 | 1-25 | 3247 | 990 | 5158 | 1572 | 8204 | 2501 |
| 1-25 | 1-25 | 2722 | 830 | 4324 | 1318 | 6878 | 2096 |
| 26-50 | 1-25 | 2202 | 671 | 3498 | 1066 | 5563 | 1696 |
| 51-75 | 1-25 | 1686 | 514 | 2678 | 816 | 4259 | 1298 |
| 76-100 | 1-25 | 1174 | 358 | 1865 | 568 | 2966 | 904 |
| 101-125 | 1-25 | 666 | 203 | 1058 | 323 | 1683 | 513 |
| 0 | 26-50 | 2204 | 672 | 3502 | 1067 | 5570 | 1698 |
| 1-25 | 26-50 | 1664 | 507 | 2644 | 806 | 4205 | 1282 |
| 26-50 | 26-50 | 1129 | 344 | 1793 | 547 | 2852 | 869 |
| 51-75 | 26-50 | 598 | 182 | 950 | 289 | 1511 | 460 |
| 76-100 | 26-50 | 71 | 22 | 113 | 34 | 179 | 55 |
| 101-125 | 26-50 |  |  |  |  |  |  |
| 0 | 51-75 | 1263 | 385 | 2007 | 612 | 3192 | 973 |
| 1-25 | 51-75 | 710 | 216 | 1128 | 344 | 1794 | 547 |
| 26-50 | 51-75 | 161 | 49 | 256 | 78 | 407 | 124 |
| 51-75 | 51-75 |  |  |  |  |  |  |
| 76-100 | 51-75 |  |  |  |  |  |  |
| 101-125 | 51-75 |  |  |  |  |  |  |
| 0 | 76-100 |  |  |  |  |  |  |
| 1-25 | 76-100 |  |  |  |  |  |  |
| 26-50 | 76-100 |  |  |  |  |  |  |
| 51-75 | 76-100 |  |  |  |  |  |  |
| 76-100 | 76-100 |  |  |  |  |  |  |
| 101-125 | 76-100 |  |  |  |  |  |  |
| 0 | 101-125 |  |  |  |  |  |  |
| 1-25 | 101-125 |  |  |  |  |  |  |
| 26-50 | 101-125 |  |  |  |  |  |  |
| 51-75 | 101-125 |  |  |  |  |  |  |
| 76-100 | 101-125 |  |  |  |  |  |  |
| 101-125 | 101-125 |  |  |  |  |  |  |

Diagrams are for reference only. Consult the appropriate installation sheet for wiring details.

## REFERENCE SECTION

## NETWORK DATA RISER LIMITS

Overview
Cumulative data network capacitance refers to the total capacitance of all copper wire used for the data riser. The cumulative capacitance of data networks must be within certain limits to permit stable network communications. Audio networks are not affected by cumulative capacitance, due to the method of retransmitting data. The audio network retransmits data byte-by-byte, so the individual bit times of a byte are restored at each node in the network. The data network retransmits data bit-by-bit. This method of retransmitting data restores the amplitude of a bit at each node, but any distortions in bit timing are passed through to the next node. Data network communication faults begin to occur at about 23\% distortion of bit timing. Cumulative data network capacitance induces bit timing distortion.
A fiber link in a data network electrically isolates two nodes, but distortions in bit timing are not restored by the fiber segment. Distortions in bit timing are passed through the fiber to the next node. The bit transition time of model 3-FIB fiber cards is fast enough to be neglected in determining the maximum wire length that can be used in the data network.

## Data network specifications

Here are the maximum allowed values between any three nodes of a network.

- Resistance: 90 ohms
- Distance: 5,000 feet
- Capacitance: 0.3 microfarads

The following table lists the maximum cumulative capacitance for the entire data network given various wire sizes and transmission rates. Maximum cumulative capacitance is the total capacitance of all installed copper wire used in the data network.

| MAXIMUM CUMULATIVE CAPACITANCE IN MICROFARADS |  |  |
| :---: | :---: | :---: |
| Wire size (AWG) | At 38.4 Kbaud | At 19.2 Kbaud |
| 18 | 1.4 | 2.8 |
| 16 | 1.8 | 3.6 |
| 14 | 2.1 | 4.2 |

Cable properties
Data and audio networks in an EST3 system do not require the use of shielded cable, and networks designed with twisted-pair can be about twice as long as those designed with shielded cable. The maximum length of a data network varies with the properties of the wire used. Wire manufacturers typically provide specifications for wire resistance and capacitance.
continues on next page

## REFERENCE SECTION

## NETWORK DATA RISER LIMITS

Resistance is generally specified in ohms per 1,000 feet, and must be doubled for 1,000 feet of a twisted-pair cable. Capacitance is specified in picofarads per foot (pF/ft). The capacitance between conductors of a twisted-pair is commonly referred to as conductorconductor or mutua/ capacitance. Shielded cable has an additional capacitance between each conductor and the shield. The capacitance of either conductor to shield is typically twice the value of mutual capacitance, and the highest value of capacitance must be used when calculating the maximum length of a data network. The overall length of data networks designed with twisted-pair cable is about twice as long as data networks designed with shielded cable due to the additional capacitance resulting from the shield.
Calculating a maximum length
The maximum length of a data network can be calculated by dividing the maximum cumulative capacitance allowed by the highest capacitance rating of the selected cable. For example, say you wanted to determine maximum length of a data network using 18 AWG cable that is rated at 25 pF per foot. The network will communicate at 38.4 Kbaud. The maximum length equals the maximum cumulative capacitance divided by the capacitance per foot. In equation form:

$$
M L=M C C / C P F
$$

In our example: $\mathrm{ML}=1.4 \mathrm{mF} / 25 \mathrm{pF} / \mathrm{ff} ; \mathrm{ML}=56,000 \mathrm{ft}$
Calculating maximum wire capacitance per foot
The capacitive property of twisted-pair cable varies and the cost of cable generally increases as the capacitance per foot decreases. Following is a sample calculation for determining the maximum capacitance per foot that a cable can have for a given network length. The maximum capacitance per foot equals the maximum cumulative capacitance divided by the total network length. In equation form:

$$
M C P F=M C C / T N L
$$

Where: - MCC can be obtained from the table given in this topic

- Total network length is the sum of the lengths of individual copper runs in the network

Example: The total copper distance of a network is $26,000 \mathrm{ft}$. Calculate the maximum capacitance per foot that can be used for 18 AWG twisted-pair cable at 38.4 K baud.

$$
\begin{aligned}
& \text { MCPF }=\text { MCC } / \mathrm{TNL} \\
& \text { MCPF }=1.4 \mathrm{mF} / 26,000 \mathrm{ft} \\
& \text { MCPF }=53.8 \mathrm{pF} / \mathrm{ft}
\end{aligned}
$$

## REFERENCE SECTION

## 3-SAC DATA BUS \& 3-SAC POWER

## 3-SAC Data Bus

SAC bus wiring riquirements
Type: unshielded, twisted pair, $>6$ twists per foot
Maximum bus length: $4,000 \mathrm{ft}(1,220 \mathrm{~m}) @ 25 \mathrm{pF} / \mathrm{ft}$
Maximum total circuit capacitance: $0.1 \mu \mathrm{~F}$
Maximum total circuit resistance: 52 hms

## 3-SAC Power

This topic provides information to help you determine whether:

- A power supply must be added to the SAC bus
- Adequate voltage will be available to CRCs and KPDISPs on the SAC bus
- The standby battery in each CRC is properly sized

Determining the need for a remote power supply
The need for additional power is dictated by the current drawn by the devices on the SAC bus. Each 3-PPS/M can supply a total of 7 A through two 3.5 A outputs. Each SAC line can therefore draw a maximum of 3.5 A . This consists of the current drawn by the CRCs and KPDISPs plus any readers, strikes, or maglocks.
If the load on the 3-PPS/M supply is greater than 3.5 A , you'll need to split the devices over two SAC buses, or add a remote power supply.

To determine the total load on the 3-PPS/M:

1. Complete Form A (below) to calculate the system alarm and standby load current.
2. Total the columns to determine the Total Alarm Load and Total Amp Hours. These two totals will be used in later calculations.
3. If the Total Alarm Load is greater than 3.5 A , the devices must be divided between two SAC buses, each with a separate supply - OR — a remote power supply must be installed.
4. If a remote power supply is used a ground wire must be between the 3 -SAC and the remote power supply.

## REFERENCE SECTION

## SACBUSPOWER

Form A: 3-SAC alarm and standby load

| Device | Qty | Alarm current (mA) | Total alarm current (mA) | Standby current (mA) | Total <br> Standby <br> current <br> (mA) | Standby time (Hours) | Amp hours <br> (mAH) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KPDISP |  | 100 |  | 35 |  |  |  |
| CRC |  | 70 |  | 60 |  |  |  |
| CR-5355 |  | 72 |  | 70 |  |  |  |
| CR-5365 |  | 31 |  | 25 |  |  |  |
| CR-5395 |  | 24 |  | 20 |  |  |  |
| CR-6005 |  | 20 |  | 20 |  |  |  |
| Reader sounder |  | 8 |  | 0 |  |  |  |
| CRCSND |  | 8 |  | 0 |  |  |  |
| Strike rating |  |  |  |  |  |  |  |
| 100 mA @ 12V |  | 33 |  | 0 |  |  |  |
| 150 mA @ 12V |  | 40 |  | 0 |  |  |  |
| 200 mA @ 12V |  | 42 |  | 0 |  |  |  |
| 250 mA @ 12V |  | 47 |  | 0 |  |  |  |
| 300 mA @ 12V |  | 51 |  | 0 |  |  |  |
| 35 mA @ 12V |  | 55 |  | 0 |  |  |  |
| 400 mA @ 12V |  | 58 |  | 0 |  |  |  |
| 450 mA @ 12V |  | 63 |  | 0 |  |  |  |
| 500 mA @ 12V |  | 65 |  | 0 |  |  |  |
| Maglock rating |  |  |  |  |  |  |  |
| 100 mA @ 12V |  | 80 |  | 80 |  |  |  |
| 150 mA @ 12V |  | 126 |  | 126 |  |  |  |
| 200 mA @ 12V |  | 156 |  | 156 |  |  |  |
| 250 mA @ 12V |  | 187 |  | 187 |  |  |  |
| 300 mA @ 12V |  | 233 |  | 233 |  |  |  |
| 350 mA @ 12V |  | 283 |  | 283 |  |  |  |
| 400 mA @ 12V |  | 376 |  | 376 |  |  |  |
| 450 mA @ 12V |  | 436 |  | 436 |  |  |  |
| 500 mA @ 12 V |  | 470 |  | 470 |  |  |  |
| Total alarm load (must be < 3.5 A ) |  |  |  |  |  |  |  |
| Total amp hours (Battery) |  |  |  |  |  |  |  |
| Note: Standby time $=$ length of time that the device will draw standby current from battery. There is no minimum standby time for access control. |  |  |  |  |  |  |  |

## REFERENCE SECTION

## SAC BUS POWER

Providing adequate voltage for devices
To determine whether each CRC and KPDISP will have adequate input voltage, calculate the voltage drops along the SAC bus. Voltage drops can be estimated or actual.

Estimated voltage drop
To estimate the voltage drop use Table D-1 and Table D-2, which show the maximum wire length for a given number of doors at a given current load. The tables assume even spacing between the doors and an equal load at each door.

1. First, determine the load per door by adding the alarm currents of the CRC, door lock, card reader, and sounder.
2. Determine the number of doors you need to secure. Find the number of doors Table D-1 then search across that row for the column with the current you calculated in step 1 .
3. The intersection gives the maximum distance from the 3-PPS/M or remote power supply to the last door.
4. If the distance to the last door in your installation is less than this distance no further calculations are needed.
5. If the distance to the last door in you installation is greater than this distance check TYable D-2 using steps 1 through 4.
6. If changing the gauge of the wire does not work, you must run a second power line, or divide the SAC bus and add a remote power supply. In either case, recheck your estimates.

For example: You are putting a CRC, a strike rated at $250 \mathrm{~mA} @ 12 \mathrm{Vdc}$, a CR-5395 and a CRCSND at 8 doors. The furthest door is 500 feet from the control.
Using step 1 above, you determine that the total alarm current for this door is 149
mA . In Table D-1 (for 16 AWG), find 8 in the Doors column, go across this row to the
150 mA column. The intersection shows a maximum length of 584 feet. Since the distance from the control panel to the last door is less than 584 feet, no further calculations are needed.

## Actual voltage drop

To calculate the actual voltage drop based on the actual load for each device and the actual distance between each device, follow the steps on the next page.

## REFERENCE SECTION

## SAC BUS POWER

1. Start the EST 3 System Builder program and select the 16 AWG check box.
2. Enter the actual alarm load for the first device and the distance from the control panel to that device. The system will calculate the voltage drop and indicate whether it is 0 K to continue.
3. Continue by adding the actual alarm load and the distance from the previous device for each device on the SAC bus.
4. If you successfully enter all devices with no error messages, no further calculations are required. The panel supply will be adequate and each device will receive sufficient voltage.
5. If an error message occurs, you have the following options:

- Repeat the process using 14 AWG in step 1
- Run a second power supply line
- Divide the SAC bus and add a remote power supply

Table D-1: SAC bus wire lengths versus number of doors and current loads using 16 AWG wire

| Doors | Load (mA) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 70 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 |  |
| 1 | 4000 | 4000 | 2650 | 2000 | 1600 | 1300 | 1140 | 1000 | 885 | 800 | 720 | 665 | 616 |  |
| 2 | 3800 | 2660 | 1776 | 1300 | 1060 | 880 | 760 | 666 | 594 | 532 | 484 | 444 | 410 |  |
| 3 | 2850 | 1950 | 1320 | 990 | 780 | 660 | 570 | 498 | 444 | 399 | 363 | 333 | 306 |  |
| 4 | 2240 | 1600 | 1040 | 800 | 624 | 520 | 452 | 400 | 355 | 320 | 288 | 266 | 244 |  |
| 5 | 1875 | 1350 | 885 | 650 | 525 | 435 | 375 | 333 | 296 | 266 | 242 | 222 | 205 |  |
| 6 | 1620 | 1140 | 756 | 558 | 450 | 378 | 324 | 286 | 254 | 228 | 207 | 190 | X |  |
| 7 | 1400 | 980 | 665 | 497 | 392 | 329 | 285 | 250 | 222 | 199 | X | X | X |  |
| 8 | 1240 | 880 | 584 | 440 | 352 | 288 | 253 | 222 | 197 | X | X | X | X |  |
| 9 | 1125 | 810 | 522 | 396 | 315 | 261 | 228 | 200 | X | X | X | X | X |  |
| 10 | 1030 | 730 | 480 | 360 | 290 | 240 | 207 | X | X | X | X | X | X |  |
| 11 | 946 | 660 | 440 | 330 | 264 | 220 | X | X | X | X | X | X | X |  |
| 12 | 876 | 600 | 408 | 300 | 240 | X | X | X | X | X | X | X | X |  |
| 13 | 806 | 559 | 377 | 273 | X | X | X | X | X | X | X | X | X |  |
| 14 | 756 | 518 | 350 | X | X | X | X | X | X | X | X | X | X |  |
| 15 | 705 | 495 | 330 | X | X | X | X | X | X | X | X | X | X |  |
| 16 | 672 | 464 | 304 | X | X | X | X | X | X | X | X | X | X |  |
| 17 | 629 | 442 | X | X | X | X | X | X | X | X | X | X | X |  |
| 18 | 576 | 414 | X | X | X | X | X | X | X | X | X | X | X |  |
| 19 | 570 | 399 | X | X | X | X | X | X | X | X | X | X | X |  |
| 20 | 540 | 380 | X | X | X | X | X | X | X | X | X | X | X |  |

Note: All distance measurements given in feet. $X$ means that the 3 -PPS/M will not support these devices at any distance.

## REFERENCE SECTION

## SACBUSWIRELENGTH TABLLS

Table D-2: SAC bus wire lengths versus number of doors and current loads using 14 AWG wire

| Doors | Load (mA) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 70 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 |
| 1 | 4000 | 4000 | 4000 | 3000 | 2400 | 2000 | 1750 | 1500 | 1360 | 1200 | 1100 | 1000 | 940 |
| 2 | 4000 | 4000 | 2700 | 2000 | 1600 | 1360 | 1160 | 1000 | 900 | 800 | 740 | 680 | 620 |
| 3 | 4000 | 3000 | 2040 | 1500 | 1200 | 1020 | 870 | 750 | 660 | 600 | 555 | 510 | 471 |
| 4 | 3480 | 2400 | 1600 | 1200 | 960 | 800 | 700 | 600 | 544 | 480 | 436 | 400 | 376 |
| 5 | 2900 | 2000 | 1365 | 1000 | 800 | 675 | 575 | 500 | 455 | 405 | 365 | 335 | 315 |
| 6 | 2460 | 1710 | 1140 | 870 | 690 | 582 | 492 | 438 | 390 | 348 | 312 | X | X |
| 7 | 2170 | 1505 | 1015 | 756 | 602 | 511 | 434 | 378 | 336 | 301 | X | X | X |
| 8 | 1920 | 1360 | 904 | 680 | 544 | 448 | 384 | 336 | X | X | X | X | X |
| 9 | 1710 | 1215 | 810 | 612 | 477 | 405 | 351 | X | X | X | X | X | X |
| 10 | 1550 | 1100 | 740 | 550 | 440 | 370 | 310 | X | X | X | X | X | X |
| 11 | 1430 | 1012 | 682 | 506 | 407 | 341 | X | X | X | X | X | X | X |
| 12 | 1344 | 936 | 624 | 468 | 372 | X | X | X | X | X | X | X | X |
| 13 | 1248 | 858 | 585 | 429 | 351 | X | X | $\chi$ | X | X | X | X | X |
| 14 | 1162 | 812 | 532 | 406 | 322 | X | X | X | X | X | X | X | X |
| 15 | 1095 | 750 | 510 | 375 | X | X | X | X | X | X | X | X | X |
| 16 | 1024 | 720 | 480 | 352 | X | X | X | X | X | X | X | X | X |
| 17 | 969 | 680 | 442 | 340 | X | X | X | X | X | X | X | X | X |
| 18 | 918 | 630 | 414 | X | X | X | X | X | X | X | X | X | X |
| 19 | 874 | 608 | 399 | X | X | X | X | X | X | X | X | X | X |
| 20 | 820 | 580 | 380 | X | X | X | X | X | X | X | X | X | X |

Note: All distance measurements given in feet. $X$ means that the 3-PPS/M will not support these devices at any distance.

## REFERENCES

## CIRCCIT COMPATBIBLTY MATRIX



## REFERENCES

## PAIGE EST CABLETABLES

## REFERENCE TYPE

Initiating Device Circuit (IDC)
24 Vdc Power Distribution (Aux. Pwr)
Relay Module (ZR8 or FSRRM)

| PAIGE PART NUMBERS |  |  | NON-PLENUM |  |  | PLENUM | Outdoor or Direct Burial |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AWG | COND | DESCRIPTION | TFN or THHN | FPL | FPLR | FPLP |  |
| 18 | 2 | Twisted | 4318BR | ---> | 4703A | 4709A | 1802WDB |
|  |  | Flat - No Twist | ---> | 4700A | -- | -- | -- |
|  | 4 | Twisted | ---> | ---> | 4704A | 4711A | call Paige |
| 16 | 2 | Twisted | 4316BR | ---> | 4731A | 4740A | 1602WDB |
|  |  | Flat - No Twist | ---> | 4701A | -- | 4758A | -- |
|  | 4 | Twisted | ---> | ---> | 4724A | 4741A | call Paige |
| 14 | 2 | Twisted | 43148R | ---> | 4718A | 4719A | 1402WDB |
|  |  | Flat - No Twist | ---> | 4702A | -- | 4755A | -- |
|  | 4 | Twisted | ---> | ---> | 4732A | 4743A | call Paige |
| 12 | 2 | Twisted | ---> | ---> | 4720A | 4725A | 1202WDB |
| Refer to | Po Paige | section page \#: | 25 | 37 | 26 | 29,37 | 67 |

## REFERENCE TYPE

Notification Appliance Circuit (Audio) Analog Addressable Loop
(1) Signature Addressable Loop

| PAIGE PART NUMBERS |  |  | NON-PLENUM |  | PLENUM | Outdoor or Direct Burial |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AWG | COND | DESCRIPTION | TFN / THHN | FPLR | FPLP |  |
| 18 | 2 | Twisted | 4318BR | 4703A | 4709A | 1802WDB |
| 16 | 2 | Twisted | 4316BR | 4731A | 4740A | 1602WDB |
| 14 | 2 | Twisted | 4314BR | 4718A | 4719A | 1402WDB |
| 12 | 2 | Twisted | ---> | 4720A | 4725A | 1202WDB |
| Refer to Paige Section page \#: |  |  | 25 | 26 | 29 | 67 |

Paige DISTINGUISHER versions are available with color-coded jacket stripes for easy identification. See Paige section pp. 32-34. Metal Clad (MC) versions of TFN or THHN are available. See Paige section page 38-40.

## REFERENCES

## PAIGE EST CABLE TABLES

REFERENCE TYPE
Fireman's Telephone

| PAIGE PART NUMBERS |  |  | NON-PLENUM | PLENUM | door or |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AWG | PAIRS | Description | FPLR | FPLP | Direct Burial |
| 18 | 1 | Twisted \& Shielded | 4722A | 4717A | 1802SDB |
| 16 | 1 | Twisted \& Shielded | 4736A | 4747A | 1602SDB |
| 14 | 1 | Twisted \& Shielded | 4726A | 4727A | 1402SDB |
| 12 | 1 | Twisted \& Shielded | 4739 A | 4750A | 1202SDB |
| Refer to Paige section page \#: |  |  | 27 | 30 | 68 |

Paige DISTINGUISHER versions are available with color-coded jacket stripes for easy identification. See Paige section pp. 32-34.

## REFERENCE TYPE

(1) Card / PIN Reader

Security Device Circuit

| PAIGE PART NUMBERS |  |  | NON-PLENUM |  | PLENUM |  | Outdoor or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AWG | COND | DESCRIPTION | CMR | FPLR | CMP | FPLP |  |
| 22 | 2 | Twisted | 4606 A | -- | 4628 A | -- | -- |
| 18 | 2 | Twisted | 4640 A | 4703 A | 4641A | 4709A | 1802 WDB |
| 16 | 2 | Twisted | 4656 A | 4731 A | 4694 A | 4740 A | 1602 WDB |
| Refer to Paige section page \#: |  | $7-8$ | 26 | $15-16$ | 29 | 67 |  |

Stranded security and sound cables rated CM, CMR, and CMP may also be used. See Paige section pages 5-22.
Paige DISTINGUISHER versions are available with color-coded jacket stripes for easy identification. See Paige section pages 32-34.

## REFERENCES

## PAIGE EST CABLETABLES

## REFERENCE TYPE

## Security (3-SAC) Data Bus

Per circuit maximums for type K circuits:
Capacitance $=0.1$ microfarads, Resistance $=52$ ohms, Distance $=4000 \mathrm{ft}$
Cables shown below are twisted, non-shielded

| Paige part \#s |  | NON-PLENUM |  |  | PLENUM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AWG | COND. | Part \# | DC Res Ohms/ 1,000' | Mutual Capacitance pF/ft | Part \# | DC Res Ohms/ 1,000' | Mutual Capacitance <br> pF/ft |
| 18 | 2 | 4703A | 6.4 | 33 | 4709A | 6.4 | 33 |
| 16 | 2 | 4731A | 4.1 | 35 | 4740A | 4.1 | 35 |
| 14 | 2 | 4718A | 2.6 | 38 | 4719A | 2.6 | 39 |
| 12 | 2 | 4720A | 1.7 | 40 | 4725A | 1.7 | 42 |
| Paige part \#s |  |  |  |  |  |  |  |
|  |  | Outdoor or Direct Burial |  |  | Notes |  |  |
| AWG | COND. | Part \# | $\begin{aligned} & \hline \text { DCRes } \\ & \text { Ohms/ } \\ & 1,000 \\ & \hline \end{aligned}$ | Mutual Capacitance pF/ft | Mutual Capacitance is Nominal pico-Farads per foot. DC Resistance is Nominal Ohms per 1,000'. |  |  |
| 18 | 2 | 1802WDB | 6.4 | 31 |  |  |  |
| 16 | 2 | 1602WDB | 4.1 | 34 |  |  |  |
| 14 | 2 | 1402WDB | 2.6 | 36 |  |  |  |
| 12 | 2 | 1202WDB | 1.7 | 40 |  |  |  |
|  |  |  |  |  |  |  |  |
| EXTENDED DISTANCE |  |  |  |  |  |  |  |
| Paige part \#s |  | NON-PLENUM |  |  | PLENUM |  |  |
| AWG | COND. | Part \# | $\begin{array}{\|l\|l\|} \hline \text { DCRes } \\ \text { Ohms / } \\ 1,000 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Mutual } \\ \text { Capacitance } \end{array}$ $\mathrm{pF} / \mathrm{ft}$ | Part \# | DC Res Ohms/ $1,000^{\prime}$ | Mutual Capacitance pF / ft |
| 18 | 2 | 47032 | 6.4 | 16 | For low capacitance, extended distance, plenum options, call Paige |  |  |
| 16 | 2 | 47311 | 4.1 | 19 |  |  |  |

Paige DISTINGUISHER versions are available with color-coded jacket stripes for easy identification. See Paige section pp. 32-34.

## REFERENCES

## PAIGE EST CABLE TABLES

REFERENCE TYPE
4) Audio Network

1. RS-485 Communications Network

Per circuit maximums for type $T$ \& $U$ circuits:
Capacitance: 0.3 microfarads; $\quad$ Resistance: 90 ohms, Distance $=5000 \mathrm{ft}$

| Paige part \#s |  | NON-PLENUM |  |  | PLENUM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AWG | COND. | Part \# | DC Res Ohms/ 1,000' | Mutual Capacitance pF/ft | Part \# | DC Res Ohms/ $1,000^{\prime}$ | Mutual Capacitance pF/ft |
| 18 | 2 | 4703A | 6.4 | 33 | 4709A | 6.4 | 33 |
| 16 | 2 | 4731A | 4.1 | 35 | 4740A | 4.1 | 35 |
| 14 | 2 | 4718A | 2.6 | 38 | 4719A | 2.6 | 39 |
| 12 | 2 | 4720A | 1.7 | 40 | 4725A | 1.7 | 42 |
| Paige part \#s |  | Outdoor or Direct Burial |  |  | Notes |  |  |
| AWG | COND. | Part \# | DC Res Ohms / 1,000' | $\begin{array}{\|c\|} \hline \text { Mutual } \\ \text { Capacitance } \end{array}$ $\mathrm{pF} / \mathrm{ft}$ | Mutual Capacitance is Nominal pico-Farads per foot. DC Resistance is Nominal Ohms per 1,000'. |  |  |
| 18 | 2 | 1802WDB | 6.4 | 31 |  |  |  |
| 16 | 2 | 1602WDB | 4.1 | 34 |  |  |  |
| 14 | 2 | 1402WDB | 2.6 | 36 |  |  |  |
| 12 | 2 | 1202WDB | 1.7 | 40 |  |  |  |
|  |  |  |  |  |  |  |  |
| EXTENDED DISTANCE |  |  |  |  |  |  |  |
| Paige part \#s |  | NON-PLENUM |  |  | PLENUM |  |  |
| AWG | COND. | Part \# | $\begin{aligned} & \hline \text { DCRes } \\ & 0 \mathrm{hms} / \\ & 1,000^{\prime} \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Mutual } \\ \text { Capacitance } \\ \text { nF } \end{array}$ $\mathrm{pF} / \mathrm{ft}$ | Part \# | DC Res Ohms/ 1,000' | Mutual Capacitance pF/ft |
| 18 | 2 | 47032 | 6.4 | 16 | For low capacitance, extended distance, plenum options, call Paige |  |  |
| 16 | 2 | 47311 | 4.1 | 19 |  |  |  |

## REFERENCES

## PAIGE EST CABLETABLES

## REFERENCE TYPE

RS-232 Communications (Printer / Fireworks)

| Paige part numbers |  |  | Non-plenum | Plenum |
| :---: | :---: | :---: | :---: | :---: |
| AWG | COND | DESCRIPTION | FPLR/CMR | FPLP/CMP |
| 22 | 4 | Twisted | 4608A | 4629 A |
| 18 | 4 | Twisted | 4704 A | 4711 A |
| Refer to Paige section page \#: |  | 7,26 | 15,29 |  |

$50^{\prime}$ Max. Panel to Printer or Panel to Fireworks. Stranded security and sound cables rated CM, CMR, and CMP may also be used. See Paige section pages 5-22.

## REFERENCE TYPE

Fireshield Serial Communication Bus
Per circuit maximums for type V circuits:
Capacitance: 0.03 microfarads; Resistance: 13 ohms; Distance: $1000 \mathrm{ft} @ 18$ AWG

| Paige Part \#s |  | Non-plenum |  |  |
| :---: | :---: | :---: | :---: | :---: |
| AWG | COND. | Part \# | DC Res Ohms / 1,000' | Mutual Capacitance pF/ft |
| 18 | 2 | 4703 A | 6.4 | 33 |
| 16 | 2 | 4731A | 4.1 | 35 |
| 14 | 2 | 4718 A | 2.6 | 38 |
| 12 | 2 | 4720 A | 1.7 | 40 |
| Paige Part \#s |  | Plenum |  |  |
| AWG | COND. | Part \# | DC Res Ohms / 1,000' | Mutual Capacitance pF/ft |
| 18 | 2 | 4709A | 6.4 | 33 |
| 16 | 2 | 4740A | 4.1 | 35 |
| 14 | 2 | 4719A | 2.6 | 39 |
| 12 | 2 | 4725A | 1.7 | 42 |
| Paige Part \#s |  | Outdoor or Direct Burial |  |  |
| AWG | COND. | Part \# | DC Res 0hms / 1,000" | Mutual Capacitance pF/ft |
| 18 | 2 | 1802WDB | 6.4 | 31 |
| 16 | 2 | 1602WDB | 4.1 | 34 |
| 14 | 2 | 1402WDB | 2.6 | 36 |
| 12 | 2 | 1202WDB | 1.7 | 40 |

Other: Mutual Capacitance is Nominal pico-Farads per foot. DC Resistance is Nominal Ohms per 1,000'.
Paige DISTINGUISHER versions are available with color-coded jacket stripes for easy identification. See Paige section pp. 32-34.

## REFERENCES

## PAIGE EST CABLE TABLES

## REEERENCE TYPE

Network Fiber Optics

| Paige part numbers |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Non-plenum | Plenum | Outdoor or Direct Burial |
| \# Fibers | OFNR | OFNP | Tight Buffered / OFNP |
| 2 | 74LV00262 | 74DP002648 | 74KP002648 |
| 4 | 74LV004641 | 74UP004648 | 74KP004648 |
| 6 | 74LV006661 | $74 C$ P006644 | 74KPP06655 |
| Refer to Paige section page \# | 81 | 80 | 82 |
| All items are multi-mode 62.5/125 |  |  |  |
|  |  |  |  |

## REFERENCE TYPE

Netcom 16D Router

| Paige part numbers |  |  | Non-plenum | Plenum |
| :---: | :---: | :---: | :---: | :---: |
| AWG | PAIRS | Category | CMR | CMP |
| 24 | 4 | 5 E | 710548 E | 710536 E |
| 24 | 4 | 6 | 710648 | 710636 |
| Refer to Paige section page \#: |  | 53,58 | 54,58 |  |

## REFERENCE TYPE

Fireworks Short-haul Modems

| Paige part numbers |  |  | Non-plenum | Plenum |
| :---: | :---: | :---: | :---: | :---: |
| AWG | PAIRS | Category | CMR | CMP |
| 24 | 2 | 3 | 710512 | 710515 |
| 24 | 4 | 3 | 710514 | 710516 |
| Refer to Paige section page \#: |  | 51 | 52 |  |

## RSTALIERSS <br> WRE GUIDE

The EST Installer's Wire Guide is a concise reference to wire and cable requirements for EST products and systems. This valuable resource provides installers, as well as service and maintenance personnel, with at-a-glance information and more than one hundred wiring diagrams - all crossreferenced to easy-to-read wire charts. Wellorganized and easy-to-use, the EST Installer's Wire Guide is designed to be part of every technician's basic toolkit.

EST Press is an imprint of Edwards Systems Technology, Inc. 8985 Town Center Parkway, Bradenton, FL 34202

Also from EST Press:

## Security and Access Control Handbook

- A practical guide to application and system design


## Handbook of Visual Notification Appliances for Fire Alarm Applications

- A practical guide to regulatory compliance


## Glossary of Fire Alarm and Security Terminology

- A desk reference for life safety and security professionals

