
SECURE PERFECT® 6.1

database triggers
Contents
• “Overview” on page 1

• “Import Prerequisites” on page 2

• “Tables Overview” on page 2

• “Tables Defined” on page 3

• “Triggers” on page 13

• “Data Manipulation” on page 15

• “Database Connectivity” on page 20

• “Troubleshooting” on page 23

• “Printing a Report on Records Downloaded to Micros” on page 24

Overview
This document is intended to be a guide to importing and linking external database systems to
personnel data in the Secure Perfect database.

Data must be extracted from a source, formatted to conform with the appropriate Secure Perfect
record structure, and inserted into the SecurePerfect database. For example, if personnel
information (such as name, address, department, identification number, and employment status)
is already available in a Human Resources database, that information can be imported into the
SecurePerfect database.

When importing data into the SecurePerfect database, a download to the micro will only
occur in the following scenarios:

• When data is inserted into the BadgeTable, BadgeUserField,
PersonAccessRightMapTable, or PersonTable

• When data is deleted from the BadgeTable, BadgeUserField, or
PersonAccessRightMapTable

• When an update occurs in the BadgeTable, BadgeUserField, BadgeAccessTable or
PersonTable

If data is inserted, updated, or deleted from an appropriate table, a database trigger will fire and
call an extended stored procedure. The micro must be online to successfully complete a
download to the micro database.

Note: If the micro is offline, Secure Perfect will route the import data to the OfflineDownload
table. When the micro returns to online, the information will be downloaded to the micro
database.

Six extended stored procedures are used:

1. xp_BadgeDelete

2. xp_BadgeInsert

3. xp_BadgeUpdate

4. xp_PersonAccessRightsMapDelete
791 Park of Commerce Boulevard, Suite 100 Boca Raton, Florida 33487 (561) 998-6100 460553004B 06/05

5. xp_PersonAccessRightsMapInsert

6. xp_PersonTableUpdate

The extended stored procedures are located in the master database of the SPSQL instance on the
SQL 2000 Server computer. These extended stored procedures are bound to
xspDatabaseDownload.dll located in the

\Program Files\GE-Interlogix\Secure Perfect

folder or your installed path. The xspDatabaseDownload.dll is registered to the Microsoft
SQL 2000 services. If you need to uninstall Secure Perfect, you must shut down SQL 2000
services to release the xspDatabaseDownload.dll from use.

Import Prerequisites
To perform the required import/export procedures, the following knowledge base is
essential:

Structured Query Language (SQL) and SQL 2000 Server

Programming skills in Visual Basic, C++, or other program that can import data into an SQL
2000 database

Access control concepts

Tables Overview
The database tables involved in importing, exporting, or linking processes are as follows:

PersonTable

This table stores the minimum data needed to represent a person in the SecurePerfect
database.

UserFieldTable

This table stores user-definable characteristics for a specific person in the PersonTable.

BadgeTable

This table stores data representing a badge that has been inserted into the system.

Note: A badge can exist without being assigned to a person.

BadgeUserField

This table stores user-definable characteristics for a specific badge in the BadgeTable.

BadgeAccessTable

This table stores data representing a badge’s last valid access that has been inserted into the
system.

PersonAccessRightMapTable

This table maps the person to a specific access right in the AccessRightTable.

FacilityTable

This table stores data representing facility identification.
2 database triggers

DepartmentTable

This table stores data representing department and facility identification.

PersonTypeTable

This table is an association table; it stores personnel-type information such as Permanent or
Contractor. Nothing will be imported into it.

Note: Refer to SQL 2000 Enterprise Manager for detailed information about Secure Perfect
database schema.

Tables Defined

PersonTable

The PersonTable Triggers are listed in Table 12, “PersonTable Triggers,” on page 15. A
PersonTable record will be downloaded to the micro’s database if there is an associated badge
and an access right. If a PersonTable record has a badge but no access rights, a download to the
micro will NOT occur. If a PersonTable record has an access right but no badge, a download to
the micro will NOT occur.

When importing personnel data into the SecurePerfect database, start with the
PersonTable. The PersonTable holds common identifying characteristics for individuals
who will receive or have received badges.

Table 1 lists all column names in the PersonTable along with the type, default value, and
description.

See page 15 for the triggers associated with the PersonTable.
3database triggers

Table 1: PersonTable

Column Name Type Nullable Default Description

Id (auto identity) int Not Null Primary key

FirstName nvarchar(32) Null Person’s first name

LastName nvarchar(32) Not Null Person’s last name

MiddleName1 nvarchar(32) Null Person’s first middle
name

MiddleName2 nvarchar(32) Null Person’s second
middle name

Initials nvarchar(3) Null First character from
firstname,
middlename, and
middlename2

EmployeeNumber nvarchar(12) Not Null Information that
uniquely identifies
person (Number must
be at least four
characters.)

Address1 nvarchar(64) Null Location of person or
e-mail

Address2 nvarchar(64) Null Location of person or
e-mail

Address3 nvarchar(64) Null Location of person or
e-mail

Address4 nvarchar(64) Null Location of person or
e-mail

Address5 nvarchar(64) Null Location of person or
e-mail

Telephone nvarchar(14) Null Person’s phone
number

PersonTypeId int Not Null Foreign key to
PersonTypeTable

DepartmentId int Null Department to which
person belongs (See
DepartmentTable for
Id.)

Traced tinyint Not Null 0 Is the person being
traced?
0 = no
1 = yes

Photo nvarchar(255) Null Name of file containing
photographic image of
person; name format is
<personId.jpg>
4 database triggers

UserFieldTable

The UserFieldTable stores user-definable characteristics for a specific person in the
PersonTable. The PersonTable and the UserFieldTable have a one-to-one relationship.
For every record in the PersonTable, there must be a corresponding record in the
UserFieldTable. The minimum information for the UserFieldTable will consist of the
corresponding PersonTableId in the PersonId column of the PersonTable and the time the
record was changed in the Modified column.

Table 2, “UserFieldTable,” on page 5 lists all column names in the UserFieldTable along with
the type, default value, and description.

FacilityId int Not Null 1 Foreign key to
FacilityTable

Modified1 float(53) Not Null 0 Date and time record
was last modified

1. The Modified column is a decimal number with a zero(0) date equivalent to the date
1899-12-30 00:00:00.000. SQL Server uses a zero(0) date equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL Server, you must subtract
2 to make the time consistent with other tables in the database. If the modified value
retrieved from a table is 37328.332404243825, you would get the correct date by using
‘select cast(37328.332404243825 as datetime) - 2’.

Table 2: UserFieldTable

Column Name Type Nullable Default Description

PersonId int Not Null Foreign key to the
PersonTable

Value1 nvarchar(32) Null User-definable data

:

:

Value 90 nvarchar(32) Null User-definable data

Modified1

1. The Modified column is a decimal number with a zero(0) date equivalent to the date
1899-12-30 00:00:00.000. SQL Server uses a zero(0) date equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL Server, you must
subtract 2 to make the time consistent with other tables in the
database. If the modified value retrieved from a table is 37328.332404243825, you would
get the correct date by using ‘select cast(37328.332404243825 as datetime) - 2’.

float(53) Not Null 0 Date and time record
was last modified

Table 1: PersonTable (Continued)

Column Name Type Nullable Default Description
5database triggers

BadgeTable

The BadgeTable holds information on a badge that has been inserted into the system.

Table 3 lists all column names in the BadgeTable along with the type, default value, and
description. Following the table is a list of columns with additional import information.

See page 13 for the triggers associated with the BadgeTable.

Table 3: BadgeTable

Column Name Type Nullable Default Description

Id int Not Null Primary key

Description nvarchar(64) Null Unique descriptive text

PersonId int Null Person record
assigned to the badge
record (This is not a
foreign key. A badge
can exist without being
assigned to a person.)

EncodedNumber nvarchar(20) Not Null Number encoded into
the card. (Only
numbers and blanks
are allowed and all
numbers must be
contiguous with any
blanks leading all
numbers.)

AliasNumber nvarchar(20) Not Null Number that may be
used to hide encoded
number

Status tinyint Not Null 1 Badge’s status (one of
the following):
1 = Active
2 = Issuable
3 = Suspended
4 = Lost
5 = Remake

PIN nvarchar(4) Null Personal Identification
Number (Only
numbers and blanks
are allowed and all
numbers must be
contiguous with any
blanks leading all
numbers.)

ReturnDate1 float(53) Null Date badge was last
unassigned from a
person - Null when it
was never assigned
6 database triggers

Importing data into the BadgeTable to create a new badge without the use of Secure Perfect
software can be accomplished. The sections that follow provide additional information required
to successfully import data into the BadgeTable.

EncodedNumber

Number stored in the badge and used by readers to identify a specific badge. The encoded
number is built into the card. When a card is issued, the number is read from the card and
inserted into the BadgeTable. The encoded number type is nvarchar and must be between 4
and 20 contiguous numeric characters in length. If you plan to import encoded numbers,
they must be unique and between 4 and 20 characters in length.

The EncodedNumber column cannot be updated. Once data is inserted into the column, it
cannot be changed.

Alias Number

Any artificially created number that is used to hide the encoded number, or a copy of the
encoded number. If aliasing is turned off, both columns, Encoded Number and AliasNumber,
will have the same value. The alias number is the number displayed to operators of Secure
Perfect. This allows Secure Perfect to ‘hide’ the real badge encoded numbers from anybody
using Secure Perfect.

The AliasNumber column cannot be updated. Once data is inserted into the column, it
cannot be changed. For more information on aliasing, see the Secure Perfect Online Help.

PIN

PIN is only used with a badge and keypad reader. The PIN must be four digits.

IssueDate1 float(53) Null 0 Date the badge was
assigned or the date
the badge will become
active2

DueDate1 float(53) Null 0 Date that badge is no
longer allowed access

Modified1 float(53) Not Null 0 Date and time when
record was last
modified

FacilityId int Not Null 1 Foreign key to the
FacilityTable

1. The Modified column and all columns representing a date are decimal numbers with a
zero(0) date equivalent to the date 1899-12-30 00:00:00.000. SQL Server uses a zero(0)
date equivalent date of 1900-01-01 00:00:00.000. If you use getdate() or any other date
function in SQL Server, you must subtract 2 to make the time consistent with other tables
in the database. If the modified value retrieved from a table is 37328.332404243825, you
would get the correct date by using ‘select cast(37328.332404243825 as datetime) - 2’.
2. A badge set to Active before the issue date will result in a badge that will provide valid
access.

Table 3: BadgeTable (Continued)

Column Name Type Nullable Default Description
7database triggers

Status

Can have values from 1 to 6

where:

When creating a badge for the first time, you do not have to assign it to a person in the
PersonTable (PersonId column is nullable). If the PersonId column is left null, the row is
not downloaded to the micro.

All columns representing a date are decimal numbers with a zero(0) date equivalent to the date
1899-12-30 00:00:00.0000. SQL server uses a zero(0) equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL server, you must subtract
2 to make the time consistent with other tables in the database.

ReturnDate

Date the badge will be unassigned from a person. The ReturnDate value is of type float and
a decimal representation of a date.

The ReturnDate column is informational only which means that changing this column will
not cause a download to the micro to occur. The status can be set to 2 to make the badge
active and issuable. The status can be set to 3 (suspended) to remove badge access. Once the
status is updated, the micro database will be updated.

IssueDate

Date the badge was assigned or the date the badge will become active. The IssueDate
column is of type float and a decimal representation of a date. When the IssueDate and the
current date are the same, the micro’s database will automatically allow the badge to have
access.

DueDate

Date a badge is no longer allowed access. The DueDate column is of type float and a
decimal representation of a date. When the DueDate date and the current date are the same,
the micro’s database automatically invalidates that badge’s access. The maximum DueDate
cannot exceed the current date plus 9 years. The status column does not automatically
change when the DueDate is greater than or equal to the current date.

1 Indicates badge is active with a valid PersonId in the PersonId column.

2 Indicates badge is issuable and the PersonId column is null.

3 Indicates badge is suspended. A suspended badge will not have access
to any reader.

4 Indicates badge is lost. A lost badge will not have access on any reader.

6 Indicates that this is a Guard Tour badge.
8 database triggers

BadgeAccessTable

The BadgeAccessTable stores data indicating location and date/time of last valid access. The
BadgeAccessTable and the BadgeTable are closely linked. For each record in the
BadgeTable a record in the BadgeAccessTable must exist.

Table 4 lists all column names in the BadgeAccessTable along with the type, default value,
and description.

During an import, the following values are set:

BadgeId
Corresponding BadgeId in the BadgeTable.

Last Access

Will be zero(0) by default. The zero represents a badge that has never accessed a reader.

APBStatus

TAStatus
Will be set to zero(0) which is neutral. For more information on Time and Attendance, refer
to the Secure Perfect Online Help.

Table 4: BadgeAccessTable

Column Name Type Nullable Default Description

BadgeId int Not Null Primary key

LastAccess1

1. This date column is a decimal number with a zero(0) date equivalent to the date
1899-12-30 00:00:00.000. SQL Server uses a zero(0) date equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL Server, you must
subtract 2 to make the time consistent with other tables in the database. If the modified
value retrieved from a table is 37328.332404243825, you would get the correct date by
using ‘select cast(37328.332404243825 as datetime) - 2’.

float(53) Null 0 Date and time when a
valid badge accessed
reader

APBStatus int Not Null 0 Current global
anti-passback status:
0 = Neutral
1 = In
2 = Out

TAStatus int Not Null 0 Current global time
and attendance status:
0 = Neutral
1 = In
2 = Out

ReaderId int Null 0 Reader that was last
accessed

RegionId2

2. This column pertains to Secure Perfect Global Edition 6.1.1 and stores Region data.

int Null 1 Badge accessed a
reader in the current
Region.
9database triggers

ReaderId
Will be null when importing in the initial record.

RegionId

Leave as default value.

Note: After the initial record has been imported, do not manipulate the BadgeAccessTable
directly.

BadgeUserField

The BadgeUserField stores user-definable characteristics for a specific person in the
BadgeTable. The BadgeTable and the BadgeUserField have a one-to-one relationship. For
every record in the BadgeTable, there must be a corresponding record in the
BadgeUserField. The minimum information for the BadgeUserField will consist of the
corresponding BadgeTableId in the BadgeId column of the BadgeTable and the time the
record was changed in the Modified column.

Table 5 lists all column names in the BadgeUserField along with the type, default value, and
description.

PersonAccessRightMapTable

The PersonAccessRightMapTable maps the person to a specific access right in the
AccessRightTable.

Table 6, “PersonAccessRightMapTable,” on page 11 lists all column names in the
PersonAccessRightMapTable along with the type, default value, and description.

See page 14 for the triggers associated with the PersonAccessRightMapTable.

Table 5: BadgeUserField

Column Name Type Nullable Default Description

BadgeId int Not Null Foreign key to the
BadgeTable

BadgeUserField1 nvarchar(32) Null User-definable data

:

:

BadgeUserField20 nvarchar(32) Null User-definable data

Modified1

1. The Modified column is a decimal number with a zero(0) date equivalent to the date
1899-12-30 00:00:00.000. SQL Server uses a zero(0) date equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL Server, you must subtract
2 to make the time consistent with other tables in the database. If the modified value
retrieved from a table is 37328.332404243825, you would get the correct date by using
‘select cast(37328.332404243825 as datetime) - 2’.

float(53) Not Null 0 Date and time record
was last modified
10 database triggers

When inserting or updating into the PersonAccessRightMapTable, make sure that a PersonId
from the PersonTable and an AccessRightId from the AccessRightTable exist. Access is
granted to a person record, not a badge; keep this in mind when you are working with the
SecurePerfect database.

A Person record can be associated with multiple badges; however, a badge CANNOT have
multiple person records. The PersonAccessRightMapTable is the table that will grant an
individual person access to specific areas already set up by Secure Perfect software.

You must create Access Rights within the Secure Perfect system. Do not try to create and import
new access rights.

FacilityTable

The FacilityTable stores data representing facility identification.

Table 7 lists all column names in the FacilityTable along with the type, default value, and
description.

Table 6: PersonAccessRightMapTable

Column Name Type Nullable Default Description

PersonId int Not Null Foreign key to the
PersonTable

AccessRightId int Not Null Foreign key to the
AccessRightTable

Modified1

1. The Modified column is a decimal number with a zero(0) date equivalent to the date
1899-12-30 00:00:00.000. SQL Server uses a zero(0) date equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL Server, you must
subtract 2 to make the time consistent with other tables in the database. If the modified
value retrieved from a table is 37328.332404243825, you would get the correct date by
using ‘select cast(37328.332404243825 as datetime) - 2’.

float(53) Not Null 0 Date and time the
record was last
modified
11database triggers

DepartmentTable

The DepartmentTable stores data representing department and facility identification.

Table 8 lists all column names in the DepartmentTable along with the type, default value, and
description.

PersonTypeTable

The PersonTypeTable stores data representing personnel type such as Permanent or
Temporary.

Table 9, “PersonTypeTable,” on page 13 lists all column names in the PersonTypeTable along
with the type, default value, and description.

Table 7: FacilityTable

Column Name Type Nullable Default Description

Id (auto identity) int Not Null Primary key

Description nvarchar(64) Not Null Unique descriptive text

Modified1

1. The Modified column is a decimal number with a zero(0) date equivalent to the date
1899-12-30 00:00:00.000. SQL Server uses a zero(0) date equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL Server, you must
subtract 2 to make the time consistent with other tables in the database. If the modified
value retrieved from a table is 37328.332404243825, you would get the correct date by
using ‘select cast(37328.332404243825 as datetime) - 2’.

float(53) Not Null 0 Date and time the
record was last
modified

Table 8: DepartmentTable

Column Name Type Nullable Default Description

Id (auto identity) int Not Null Primary key

Description nvarchar(64) Not Null Unique descriptive text

FacilityId int Not Null 1 Foreign key to the
FacilityTable

Modified1

1. The Modified column is a decimal number with a zero(0) date equivalent to the date
1899-12-30 00:00:00.000. SQL Server uses a zero(0) date equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL Server, you must
subtract 2 to make the time consistent with other tables in the database. If the modified
value retrieved from a table is 37328.332404243825, you would get the correct date by
using ‘select cast(37328.332404243825 as datetime) - 2’.

float(53) Not Null 0 Date and time record
was last modified
12 database triggers

Triggers
A trigger is called to download changes to a micro whenever fields in certain columns are
deleted, inserted, or updated. Only three tables contain triggers that deal with the import process:
BadgeTable, PersonAccessRightMapTable, and PersonTable.

BadgeTable Triggers

The BadgeTable Triggers are listed in Table 10.

tr_Badge_Delete

A delete trigger on the BadgeTable. When the tr_Badge_Delete trigger fires, it calls the
xp_BadgeDelete extended stored procedure that calls the xspDatabaseDownload.dll to
remove the badge from the micro’s database.

Table 9: PersonTypeTable

Column Name Type Nullable Default Description

Id (auto identity) int Not Null Primary key

Description nvarchar(64) Not Null Unique descriptive text

BadgeDesignId int Null Badge design used by
default for printing
badges for this person
type

FacilityId int Null 1 Foreign key to the
FacilityTable

Modified1

1. The Modified column is a decimal number with a zero(0) date equivalent to the date
1899-12-30 00:00:00.000. SQL Server uses a zero(0) date equivalent date of 1900-01-01
00:00:00.000. If you use getdate() or any other date function in SQL Server, you must
subtract 2 to make the time consistent with other tables in the database. If the modified
value retrieved from a table is 37328.332404243825, you would get the correct date by
using ‘select cast(37328.332404243825 as datetime) - 2’.

float(53) Not Null 0 Date and time the
record was last
modified

Table 10: BadgeTable Triggers

Action Trigger Column(s) Trigger Fired
Extended Stored

Procedure

Delete All columns in the BadgeTable
All columns in the BadgeAccessTable

tr_Badge_Delete xp_BadgeDelete

Insert Minimum of: EncodedNumber,
AliasNumber, Status, Modified,
FacilityId, IssueDate

tr_Badge_Insert xp_BadgeInsert

Update status or duedate or pin or personId tr_Badge_Update xp_BadgeUpdate
13database triggers

tr_Badge_Insert

An insert trigger on the BadgeTable. When the tr_Badge_Insert trigger fires, it checks if
the facilityId exists. If the facilityId exists, the transaction proceeds normally. If the
facilityId does not exist, a one(1) is inserted for the facilityId. A one(1) for facilityId means
Ignore Facilities. After the facility check, the xp_BadgeInsert extended stored procedure is
called. If there is a personId and the person record has access rights, the badge information is
downloaded to the micro. If the personId field is null and/or the person record has no access
rights, a download to the micro will not occur.

When a record is inserted into the BadgeTable, you must insert a corresponding record
into the BadgeAccessTable. The record will be the BadgeID of the record just inserted
into the BadgeTable, LastAccess with a value of zero (0), APBstatus with a value of zero(0),
TAstatus with a value of (0), and a ReaderId set to zero(0).

tr_Badge_Update

An update trigger on the BadgeTable. When the tr_Badge_Update trigger fires, it checks
the EncodedNumber or AliasNumber, Status, DueDate, PIN, IssueDate, and PersonId. If the
EncodedNumber or AliasNumber is updated, an error will be fired and the transaction will
be rolled back. If the EncodedNumber and AliasNumber are untouched, then the trigger will
check if the status, IssueDate, duedate, PIN, or PersonId columns have been updated. If one
or more of the previously noted columns have been updated, a download to the micro will
occur. The download to the micro will only occur if the badge is associated with a valid
personId and the person has access rights.

PersonAccessRightMapTable Triggers

The PersonAccessRightMapTable Triggers are listed in Table 11.

tr_person_access_rights_map_delete

A delete trigger on the PersonAccessRightMapTable. When this trigger fires, it will call
the xp_PersonAccessRightsMapDelete extended stored procedure and the associated badge
record will be removed from the micros.

tr_person_access_rights_map_insert

An insert trigger on the PersonAccessRightMapTable. When this trigger fires, the
xp_PersonAccessRightMapInsert extended stored procedure inserts a badge record into the
micros.

Table 11: PersonAccessRightMapTable Triggers

Action Trigger
Column(s)

Trigger Fired Extended Stored Procedure

Delete All tr_person_access_rights_map_delete xp_PersonAccessRightMapDelete

Insert All tr_person_access_rights_map_insert xp_PersonAccessRightMapInsert

Update Not Applicable
14 database triggers

PersonTable Triggers

Note: The Triggers are detailed in the sections that follow.

The PersonTable Triggers are listed in Table 12.

tr_Facility_PersonTable

An update and insert trigger on the PersonTable. The trigger checks if the updated or
inserted facilityId exists. If the facilityId does not exist, the facilityId is set to 1 (ignore
facilities). If the facilityId does exist, then the transaction proceeds normally.

tr_TracedStatus

An update trigger on the PersonTable TRACE column. The trigger checks if the TRACE
column has changed during the update. If the column has been updated, then the
xp_PersonTableUpdate extended stored procedure is called and a download to the micro will
occur.

Data Manipulation
There are five possible scenarios where data will be imported or updated into the
SecurePerfect database:

1. A one-time mass import of people and badges

2. A one-time mass update of people and badges

3. Inserting individual records on a continuous basis from an application outside of Secure
Perfect.

4. Updating individual records on a continuous basis from an application outside of Secure
Perfect

5. Deleting records from the database

Table 12: PersonTable Triggers

Action Trigger
Column(s)

Trigger Fired Extended Stored
Procedure

Delete Not Applicable

Insert FacilityId tr_Facility_PersonTable none

Update Traced tr_TracedStatus xp_PersonTableUpdate
15database triggers

The micros must be online for any insert, update, or delete to complete successfully. If the micro
is offline, Secure Perfect will route the import data to the OfflineDownload table. When the
micro returns to online, the information will be downloaded to the micro database.

Import Methods

Data can be imported into the database using SQL 2000 bulk insert commands or DTS. If bulk
insert or DTS will be used, they must be configured to allow triggers to be fired. The setting for
the bulk insert is FIRE_TRIGGER. For DTS, the FastLoad option must be set to false.

Note: If you plan to import data into the BadgeTable, PersonAccessRightMapTable, or
PersonTable, you must use a method to insert or update records that allows the triggers to be
fired.

There are other methods to connect using Visual Basic or Visual C++.

Sources of additional information:

• SQL Books Online

• The following topics of Microsoft documentation: ADO, OLEDB, and connect.

If you choose to install the samples during installation of SQL Server, the following is a
helpful sample:

<PATH>\Microsoft SQL Server\80\Tools\DevTools\Samples\ado\vb\intro

Mass Import of People and Badges

Mass imports and updates should be executed only during off-peak hours.

Note: Previous versions of Secure Perfect required an individual update for each record; this is
no longer necessary. Statements such as UPDATE PersonTable SET Traced = 1 WHERE [ID] IN
(3,5,67,43,126,78,96) will now work.

To mass import people and badges:

1. Insert records into the PersonTable. If your person records contain DepartmentId or
FacilityId, make sure that each ID exists in the DepartmentTable and FacilityTable
respectively.

2. For every record inserted into the PersonTable, a corresponding record needs to be added
to the UserFieldTable. The minimum columns needed are the PersonId and the Modified
columns. The modified column is the date and time the record was last modified.

3. Insert the badge records into the BadgeTable and BadgeUserField. If the insert is
missing a PersonId, there will be no download to the micro. If aliasing is turned on, the alias
number and the encoded number will be different. If aliasing is turned off, the alias number
and the encoded number will be the same.

4. Insert a corresponding BadgeAccessTable record. Each record in the BadgeTable must
have a corresponding record in the BadgeAccessTable.

5. Grant the Person access rights by inserting records into the
PersonAccessRightMapTable. The AccessRightId must exist in the
AccessRightTable. Access rights are created in Secure Perfect only, do not try to create
access rights outside of Secure Perfect.
16 database triggers

Refer to Figure 1 and Figure 2 for examples of importing.

Figure 1. Flowchart - Importing Person Records Only

Insert into PersonTable

Insert into UserFieldTable

Update the BadgeTable and
BadgeUserField, and set the PersonId

column to a valid PersonId.

Insert into
PersonAccessRightMapTable

Is there a valid
PersonId in the
BadgeTable?

Does the person
have access rights?

No download to Micro

No download to Micro

Records are downloaded to
the Micro

No

No

Yes

Yes
17database triggers

Figure 2. Flowchart - Importing Person Records and Badge Records

Mass Update of People and Badges

To mass update people and badge records:

1. Update the records in the PersonTable. If you update the DepartmentId or FacilityId, make
sure that the ID exists in the DepartmentTable and the FacilityTable, respectively.

2. Update the UserFieldTable if needed or desired. To update a UserField record, you will
need the corresponding PersonID from the PersonTable.

Insert into PersonTable

Insert into UserFieldTable

Insert into
PersonAccessRightMapTable

Is there a valid
PersonId in the
BadgeTable?

Does the person
have access rights?

No download to Micro

No download to Micro

Records are downloaded to
the Micro

No

No

Yes

Yes

Insert into BadgeAccessTable

Insert into BadgeTable

Insert into BadgeUserField
18 database triggers

3. Update the badge records in the BadgeTable and BadgeUserField, if needed. If the
updated record is missing a PersonId or an access right, there will be no download to the
micro. The encoded number and the alias number cannot be updated.

4. Update the Person’s access rights by inserting records into the
PersonAccessRightMapTable. The AccessRightId must exist in the
AccessRightTable.

Note: Do not update the BadgeAccessTable.

Access rights are created only within Secure Perfect.

Caution: Do not try to create access rights outside of the Secure Perfect system.

Continuous Insert or Update of Records

A continuous insert or update of records from a system outside of Secure Perfect can be
accomplished by writing a custom program to read the data from the outside application, connect
to the SecurePerfect database, and insert or update the data into the appropriate table(s).

It is recommended that the outside application and the database have some sort of commonality.
For example, the employee number of the PersonTable in the SecurePerfect database
matches up to some identification number from the outside application. If the outside application
is a Human Resources system and Person X has been assigned the identification number 234567,
then 234567 may be inserted into the PersonTable as the employee number.

Continuous Insert

To insert individual records on a continuous basis:

1. Decide how the record in the SecurePerfect database will be able to link to the record
outside of the SecurePerfect database.

2. Write a program to connect to the SecurePerfect database and import the data.
The order of operations for an import are:

A. Insert the record into the PersonTable.

B. Insert a corresponding record into the UserFieldTable.

C. Insert a record into the BadgeTable and corresponding record in the
BadgeAccessTable.

D. Insert an access right into the PersonAccessRightMapTable, if applicable.

Continuous Update

To update individual records on a continuous basis:

1. Decide how the record in the SecurePerfect database will be able to link to the record
outside of the SecurePerfect database.

2. Write a program to connect to the SecurePerfect database and update the data.
The order of operations for an update will vary but keep the following concepts in mind:

A. The micro must be online for any insert, update, or delete to complete successfully.

B. A download to the database will occur only if a badge record has a valid PersonId and the
corresponding person record has access rights.
19database triggers

If the micro is offline, Secure Perfect will route the import data to the OfflineDownload
table. When the micro returns to online, the information will be downloaded to the micro
database.

Deleting Records from the Database

Deleting a Person

Deleting a person from the database can be accomplished by calling the usp_delete_person
stored procedure from the SecurePerfect database and passing the appropriate PersonId.
The usp_delete_person stored procedure deletes the badge, access rights, as well as other
records associated to the person.

Caution: Do not attempt to delete a person directly from the table.

Example: exec usp_delete_person 24 will delete the person with record ID 24 from the
PersonTable.

Deleting a Badge

Deleting a badge from the database can be accomplished by calling the usp_delete_badge
stored procedure from the SecurePerfect database and passing the appropriate BadgeId. The
usp_delete_badge stored procedure deletes the badge, access rights, as well as other records
associated to the badge.

Caution: Do not attempt to delete a badge directly from the table.

Example: exec usp_delete_badge 264 will delete a badge record with record ID 264 from
the BadgeTable.

Database Connectivity
The following sections detail two methods of connectivity.

ODBC Connection

If you use ODBC, you should have the SQL server administrator set up a dedicated login and
password, and assign the login to the appropriate rights and privileges. Your own dedicated
connection to the database will allow easier debugging of any application you build and more
flexibility in development. DO NOT USE the Secure Perfect ODBC connection.

ODBC connections are configured using the Control Panel ODBC setup applet. ODBC
connections can be made against any data source for which an ODBC driver has been installed.
Visual C++ 6.0 and Visual Basic ship with drivers for Text files, Access, FoxPro, Paradox,
dBase, Excel, SQL Server, and Oracle. When you create an ODBC connection, it automatically
receives a Data Source Name (DSN). The DSN is subsequently used to identify connections in
data-source controls, such as ADO Data Control and RDO Remote Data Control.

To configure an ODBC data source:

1. For Windows 2000 Server, click on Start, select Settings, Control Panel, Administrative
Tools, then Data Sources (ODBC).

2. Select the User DSN or System DSN tab. The User DSN tab lets you create user-specific
Data Source Names and the System DSN tab lets you create data-sources available to all
users.
20 database triggers

3. Click Add to display a list of locally installed ODBC drivers.

4. Select the SQL server data source for your current driver.

5. Follow the instructions specific to the driver. After closing, the DSN is now available for
use.

6. You should have a valid login and password. Make the login a user of the SecurePerfect
database with appropriate rights and privileges to select, insert, update, and delete on the
database. You can assign the new user the db_owner role (see SQL server books online) to
give total access of the database to the new user.

ADO Connection Example

You can connect to the SecurePerfect database using Visual Basic and ADO.

The example in Figure 3 uses the Microsoft ActiveX Data Objects. Add the ADO reference from
Visual Basics Project toolbar, then select References and check the ADO reference. Add a text
box and a command button.

There are other methods to connect using Visual Basic or Visual C++. Additional information
can be obtained in the following topics of Microsoft documentation: ADO, OLEDB, and
connect. If you choose to install the samples during installation of SQL Server, the following is a
helpful sample:

<PATH>\Microsoft SQL Server\80\Tools\DevTools\Samples\ado\vb\intro
21database triggers

Figure 3. Sample Program - ADO Connection

O
p
t
i
o
n

E
x
p
l
i
c
i
t

D
i
m

c
n

A
s

N
e
w

A
D
O
D
B
.
C
o
n
n
e
c
t
i
o
n

P
r
i
v
a
t
e

S
u
b

C
o
m
m
a
n
d
1
_
C
l
i
c
k
(
)

O
n

E
r
r
o
r

G
o
T
o

E
r
r
H
a
n
d
l
e
r
:

D
i
m

U
s
e
r
N
a
m
e

A
s

S
t
r
i
n
g

D
i
m

P
a
s
s
w
o
r
d

A
s

S
t
r
i
n
g

D
i
m

S
e
r
v
e
r
N
a
m
e

A
s

S
t
r
i
n
g

D
i
m

D
B
N
a
m
e

A
s

S
t
r
i
n
g

U
s
e
r
N
a
m
e

=

"
<
a
n
y

v
a
l
i
d

l
o
g
i
n
>
"

P
a
s
s
w
o
r
d

=

"
<
p
a
s
s
w
o
r
d

f
o
r

t
h
e

v
a
l
i
d

l
o
g
i
n
>
"

S
e
r
v
e
r
N
a
m
e

=

"
<
s
e
r
v
e
r

n
a
m
e
>
\
<
i
n
s
t
a
n
c
e

n
a
m
e
>
"

'
Y
o
u
r
S
e
r
v
e
r
N
a
m
e
\
S
P
S
Q
L

D
B
N
a
m
e

=

"
S
e
c
u
r
e
P
e
r
f
e
c
t
"

'
S
e
t

c
o
n
n
e
c
t
i
o
n

p
r
o
p
e
r
t
i
e
s
.

c
n
.
C
o
n
n
e
c
t
i
o
n
T
i
m
e
o
u
t

=

2
5

'
S
e
t

t
h
e

t
i
m
e

o
u
t
.

c
n
.
P
r
o
v
i
d
e
r

=

"
s
q
l
o
l
e
d
b
"

'
S
p
e
c
i
f
y

t
h
e

O
L
E

D
B

p
r
o
v
i
d
e
r

c
n
.
P
r
o
p
e
r
t
i
e
s
(
"
D
a
t
a

S
o
u
r
c
e
"
)
.
V
a
l
u
e

=

S
e
r
v
e
r
N
a
m
e

'
S
e
t

S
Q
L
O
L
E
D
B

c
o
n
n
e
c
t
i
o
n

p
r
o
p
e
r
t
i
e
s
.

c
n
.
P
r
o
p
e
r
t
i
e
s
(
"
I
n
i
t
i
a
l

C
a
t
a
l
o
g
"
)
.
V
a
l
u
e

=

D
B
N
a
m
e

'
S
e
t

S
Q
L
O
L
E
D
B

c
o
n
n
e
c
t
i
o
n

p
r
o
p
e
r
t
i
e
s
.

c
n
.
P
r
o
p
e
r
t
i
e
s
(
"
I
n
t
e
g
r
a
t
e
d

S
e
c
u
r
i
t
y
"
)
.
V
a
l
u
e

=

"
S
S
P
I
"

'
S
e
t

S
Q
L
O
L
E
D
B

c
o
n
n
e
c
t
i
o
n

p
r
o
p
e
r
t
i
e
s
.

'
C
h
a
n
g
e

m
o
u
s
e
p
o
i
n
t
e
r

w
h
i
l
e

t
r
y
i
n
g

t
o

o
p
e
n

d
a
t
a
b
a
s
e
.

S
c
r
e
e
n
.
M
o
u
s
e
P
o
i
n
t
e
r

=

v
b
H
o
u
r
g
l
a
s
s

'
O
p
e
n

t
h
e

d
a
t
a
b
a
s
e
.

c
n
.
O
p
e
n

S
c
r
e
e
n
.
M
o
u
s
e
P
o
i
n
t
e
r

=

v
b
D
e
f
a
u
l
t

T
e
x
t
1
.
T
e
x
t
=
"
C
o
n
n
e
c
t
e
d
"

E
x
i
t

S
u
b

E
r
r
H
a
n
d
l
e
r
:

'
C
h
a
n
g
e

m
o
u
s
e
p
o
i
n
t
e
r

b
a
c
k

t
o

t
h
e

d
e
f
a
u
l
t

a
f
t
e
r

o
p
e
n
.

S
c
r
e
e
n
.
M
o
u
s
e
P
o
i
n
t
e
r

=

v
b
D
e
f
a
u
l
t

'
D
i
s
p
l
a
y

t
h
e

e
r
r
o
r

m
e
s
s
a
g
e
.

M
s
g
B
o
x

E
r
r
.
D
e
s
c
r
i
p
t
i
o
n
,
,
"
E
r
r
o
r

"

'
E
n
d

t
h
e

p
r
o
g
r
a
m
.

E
n
d

E
n
d

S
u
b

22 database triggers

Troubleshooting
Use the DBtrigger diagnostic object to troubleshoot the external import, update, or delete
process.

Turning on the DBtrigger Diagnostic

Before you can capture and view diagnostic information, the appropriate diagnostic component
must be turned on.

To turn on the DBtrigger diagnostic:

1. In the Secure Perfect system, select the Administration menu, then Diagnostic Settings.

2. Click Search in the toolbar to display a list of components that you can monitor.

3. Select the DBtrigger diagnostic on the Server computer.

Note: All diagnostic objects are prefixed with a machine name.

4. Select Enable debug messages check box and click Save.

5. When you are finished troubleshooting the system, don’t forget to go back and DISABLE
debug messages.

Viewing the Diagnostics Log

For each client, there is a default logfile (others can be created) for each day of the week such as
SPEEFriday.spl.

DiagView operates in “real time.” To access DiagView in the Secure Perfect system, select
Diagnostic Viewer from the Administration menu. That is, every time Secure Perfect writes an
entry to the log file, DiagView automatically displays the latest message. By default, DiagView
displays only the latest 1000 messages. The number displayed can be changed on the Preferences
Form.

All log files should be saved in the logs folder; it will be easier to locate for backups and
upgrades. It is a shared folder which means other clients can gain access to the log files.

To view the diagnostics log:

1. In the Secure Perfect system, select the Administration menu, then Diagnostic Viewer.

2. Select the current day’s logfile.

3. When examining the log, you will see messages similar to:

BadgeTable record update

This means the database trigger has fired and has successfully called the
xspDatabaseDownload table.
23database triggers

Copyright © 2004-5 GE Security, Inc.
Secure Perfect is a registered trademark of GE Security, Inc.

Printing a Report on Records Downloaded to Micros
You can print a report that lists all records (imported, updated, or deleted) that were uploaded to
micros.

To print a report listing all records downloaded to micros:

1. In the Secure Perfect system, select the Reports menu, then Operator History.

2. In the Filter field, enter the login name Trigger.

Result: The resulting report lists all records that were passed to the
xspDatabaseDownload.dll.

	Contents
	Overview
	Import Prerequisites
	Tables Overview
	Tables Defined
	PersonTable
	UserFieldTable
	BadgeTable
	BadgeAccessTable
	BadgeUserField
	PersonAccessRightMapTable
	FacilityTable
	DepartmentTable
	PersonTypeTable

	Triggers
	BadgeTable Triggers
	PersonAccessRightMapTable Triggers
	PersonTable Triggers

	Data Manipulation
	Import Methods
	Mass Import of People and Badges
	Mass Update of People and Badges
	Continuous Insert or Update of Records
	Deleting Records from the Database

	Database Connectivity
	ODBC Connection
	ADO Connection Example

	Troubleshooting
	Turning on the DBtrigger Diagnostic
	Viewing the Diagnostics Log

	Printing a Report on Records Downloaded to Micros

